首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non‐coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2‐dependent H3K27me3 and SETD8‐dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3‐specific intracellular antibody or H3K27me3‐mintbody. By combining live‐cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP‐seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.  相似文献   

4.
5.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

6.
Chadwick BP 《Chromosoma》2007,116(2):147-157
The heterochromatin of the inactive X chromosome (Xi) is organized into nonoverlapping bands of trimethylated lysine-9 of histone H3 (H3K9me3) and trimethylated lysine-27 of histone H3 (H3K27me3). H3K27me3 chromatin of the Xi is further characterized by ubiquitylated H2A and H4 monomethylated at lysine-20. A detailed examination of the metaphase H3K9me3 pattern revealed that banding along the chromosome arms is not a consistent feature of the Xi in all cell lines, but instead is generally restricted to the centromere and telomeres. However, H3K9me3 does form a reproducible band centered at Xq13 of the active X. In contrast, H3K27me3 banding is a feature of all Xi, but the precise combination and frequency of bands is not consistent. One notable exception is a common band at Xq22–23 that spans 12–15 Mb. The detailed examination of the chromatin territory by microarray analysis refined the H3K27me3 band as well as revealed numerous less extensive clusters of H3K27me3 signals. Furthermore, the microarray analysis indicates that H3K27me3 bands are directly correlated with gene density. The reexamination of the chromosome wide banding indicates that other major H3K27me3 bands closely align with regions of highest gene density.  相似文献   

7.
目的:从异常核型人胚胎干细胞系中分离两种不同X染色体失活(XCI)状态的细胞,建立亚系,并进行对其XCI状态特征和多能性标记进行鉴定。方法:G显带鉴定人胚胎干细胞系ch HESC-3早晚期代数细胞的核型,H3K27me3免疫荧光染色鉴定早晚期ch HESC-3表观遗传差异,RT-PCR检测早晚期ch HESC-3中XIST基因的表达。利用单细胞克隆的培养分选亚系,H3K27me3、RNA polymeraseⅡ以及DAPI三种标记的共染后每种表观标记各选两株进行RT-PCR,检测两种亚系中XIST基因的表达。并对这四株细胞进行干细胞标记鉴定。结果:G显带结果证明早期ch HESC-3为正常核型,晚期代数核型为异常核型,牵涉到8条染色体的复杂结构变异。H3K27me3免疫荧光染色证明异常核型ch HESC-3中有部分细胞出现了H3K27me3凝集点,而正常核型细胞中未发现。正常核型细胞(ch HESC-3N)没有XIST基因表达,异常核型细胞(ch HESC-3C)中有表达。在RNA polymeraseⅡ着色缺口中发现H3K27me3凝集点的细胞亚株XIST基因表达阳性,polymeraseⅡ着色缺口中未发现H3K27me3凝集点的细胞亚株XIST基因表达阴性,XIST阳性和阴性细胞各选两株进行多能性标记免疫荧光染色均为阳性。结论:成功从异常核型人胚胎干细胞系中分离两种不同XCI状态的细胞并建立亚系,两种表观类型的亚系均保持多能性标记并能在长期培养中保持各自特性。  相似文献   

8.
9.
10.
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation.  相似文献   

11.
《Epigenetics》2013,8(6):366-369
Post-translational modifications of histones play key roles in the regulation of gene expression and chromatin structure in eukaryotes. Methylation of histone 3 on lysine 27 (H3K27) is one of the most common and well-studied histone post-translational modifications. The vast majority of research on this histone residue, however, has focused on the trimethylated form (H3K27me3). Despite occurring at higher levels than H3K27me3 in animals and plants, the monomethylated form of H3K27 (H3K27me1) remains relatively poorly characterized. The absence of information concerning H3K27me1 is due in large part to the fact that the enzymes catalyzing this epigenetic mark were only recently identified. In this article, we highlight new findings concerning H3K27me1, including the identification of two plant-specific H3K27 monomethyltransferases that are required for gene silencing and heterochromatin condensation. We also discuss the emerging similarities and differences in H3K27 methylation in plant and animal systems.  相似文献   

12.
13.
The chromodomain (CD) of the Drosophila Polycomb protein exhibits preferential binding affinity for histone H3 when trimethylated at lysine 27. Here we have investigated the five mouse Polycomb homologs known as Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8. Despite a high degree of conservation, the Cbx chromodomains display significant differences in binding preferences. Not all CDs bind preferentially to K27me3; rather, some display affinity towards both histone H3 trimethylated at K9 and H3K27me3, and one CD prefers K9me3. Cbx7, in particular, displays strong affinity for both H3K9me3 and H3K27me3 and is developmentally regulated in its association with chromatin. Cbx7 associates with facultative heterochromatin and, more specifically, is enriched on the inactive X chromosome. Finally, we find that, in vitro, the chromodomain of Cbx7 can bind RNA and that, in vivo, the interaction of Cbx7 with chromatin, and the inactive X chromosome in particular, depends partly on its association with RNA. We propose that the capacity of this mouse Polycomb homolog to associate with the inactive X chromosome, or any other region of chromatin, depends not only on its chromodomain but also on the combination of histone modifications and RNA molecules present at its target sites.  相似文献   

14.
15.
16.
17.
Silencing of genes on one of the two female X chromosomes early in development helps balance expression of X-linked genes between XX females and XY males and involves chromosome-wide changes in histone variants and modifications. Mouse female embryonic stem (ES) cells have two active Xs, one of which is silenced on differentiation, and provide a powerful model for studying the dynamics of X inactivation. Here, we use immunofluorescence microscopy of metaphase chromosomes to study changes in H3 mono-, di- or tri-methylated at lysine 4 (H3K4mel, -2 or -3) on the inactivating X (Xi) in female ES cells. H3K4me3 is absent from Xi in approximately 25% of chromosome spreads by day 2 of differentiation and in 40-50% of spreads by days 4-6, making it one of the earliest detectable changes on Xi. In contrast, loss of H3K4me2 occurs 1-2 days later, when histone acetylation also diminishes. Remarkably, H3K4mel is depleted on both (active) X chromosomes in undifferentiated female ES cells, and on the single X in males, and remains depleted on Xi. Consistent with this, chromatin immunoprecipitation reveals differentiation-related reductions in H3K4me2 and H3K4me3 at the promoter regions of genes undergoing X-inactivation in female ES cells, but no comparable change in H3K4me1.  相似文献   

18.
Shi J  Dawe RK 《Genetics》2006,173(3):1571-1583
We report a detailed analysis of maize chromosome structure with respect to seven histone H3 methylation states (dimethylation at lysine 4 and mono-, di-, and trimethylation at lysines 9 and 27). Three-dimensional light microscopy and the fine cytological resolution of maize pachytene chromosomes made it possible to compare the distribution of individual histone methylation events to each other and to DNA staining intensity. Major conclusions are that (1) H3K27me2 marks classical heterochromatin; (2) H3K4me2 is limited to areas between and around H3K27me2-marked chromomeres, clearly demarcating the euchromatic gene space; (3) H3K9me2 is restricted to the euchromatic gene space; (4) H3K27me3 occurs in a few (roughly seven) focused euchromatic domains; (5) centromeres and CENP-C are closely associated with H3K9me2 and H3K9me3; and (6) histone H4K20 di- and trimethylation are nearly or completely absent in maize. Each methylation state identifies different regions of the epigenome. We discuss the evolutionary lability of histone methylation profiles and draw a distinction between H3K9me2-mediated gene silencing and heterochromatin formation.  相似文献   

19.
The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 +/- HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号