首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
"Hit-and-run" transformation by adenovirus oncogenes   总被引:5,自引:0,他引:5  
According to classical concepts of viral oncogenesis, the persistence of virus-specific oncogenes is required to maintain the transformed cellular phenotype. In contrast, the "hit-and-run" hypothesis claims that viruses can mediate cellular transformation through an initial "hit," while maintenance of the transformed state is compatible with the loss ("run") of viral molecules. It is well established that the adenovirus E1A and E1B gene products can cooperatively transform primary human and rodent cells to a tumorigenic phenotype and that these cells permanently express the viral oncogenes. Additionally, recent studies have shown that the adenovirus E4 region encodes two novel oncoproteins, the products of E4orf6 and E4orf3, which cooperate with the viral E1A proteins to transform primary rat cells in an E1B-like fashion. Unexpectedly, however, cells transformed by E1A and either E4orf6 or E4orf3 fail to express the viral E4 gene products, and only a subset contain E1A proteins. In fact, the majority of these cells lack E4- and E1A-specific DNA sequences, indicating that transformation occurred through a hit-and-run mechanism. We provide evidence that the unusual transforming activities of the adenoviral oncoproteins may be due to their mutagenic potential. Our results strongly support the possibility that even tumors that lack any detectable virus-specific molecules can be of viral origin, which could have a significant impact on the use of adenoviral vectors for gene therapy.  相似文献   

3.
4.
5.
6.
7.
We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.  相似文献   

8.
9.
10.
11.
MicroRNAs have a revolutionary impact on cancer research over recent years. They emerge as important players in tumorigenesis, leading to a paradigm shift in oncology. The widespread and comprehensive use of microRNA microarrays has enabled the identification of a number of microRNAs as potential biomarkers for cancer. It is encouraging to report that microRNAs have remarkable stability in both formalin-fixed tissue and blood. Many microRNAs have been identified to act as oncogenes, tumor suppressors, or even modulators of cancer stem cells and metastasis. Some studies not only reported the identified microRNA biomarkers, but also deciphered their target genes and the underlying mechanisms. The rapid discovery of many microRNA targets and their relevant pathways has contributed to the development of microRNA-based therapeutics, but the developing progress of antisense or siRNA drugs has been hampered by stability, specificity and delivery problems. This review summarizes the most significant and latest findings of original researches on microRNAs involvement in cancer, focusing on the potential of cancer-related microRNAs as biomarkers for diagnosis, prognosis and targets for therapy.  相似文献   

12.
13.
The E4 region of human adenovirus type 9 (Ad9) transforms established rat embryo fibroblasts and encodes an essential determinant for the production of estrogen-dependent mammary tumors in rats. Testing of the seven Ad9 E4 open reading frames (ORFs) individually for transformation of the established rat embryo fibroblast cell line CREF indicated that only Ad9 E4 ORF1 possessed a significant ability to generate transformed foci on these cells. In contrast, the E4 ORF1 sequences from human Ad5 and Ad12 lacked the transforming potential exhibited by Ad9 E4 ORF1. Cell lines derived from Ad9 E4 ORF1-transformed foci expressed the 14-kDa Ad9 E4 ORF1 protein and formed colonies in soft agar. In addition, the Ad9 E4 ORF1 protein was required for initiation of mammary oncogenesis in vivo, as E4 ORF1 mutant viruses failed while E4 ORF2 and ORF3 mutant viruses succeeded in eliciting mammary tumors in animals. A role for Ad9 E4 ORF1 in tumor maintenance was suggested by the fact that 100% of virus-induced mammary tumors expressed the E4 ORF1 protein. Taken together, the facts that the Ad9 E4 ORF1 protein exhibits transforming potential in culture and is required by Ad9 to produce mammary tumors in animals suggest that Ad9 E4 ORF1 is a new viral oncoprotein.  相似文献   

14.
Small DNA viruses are dependent on the interaction of early proteins (such as large T antigen) with host p53 and Rb to bring about the G1-to-S cell cycle transition. The large DNA viruses are less dependent on host regulatory genes since additional early viral proteins (such as viral DNA polymerase, DNA metabolic enzymes, and other replication proteins) are involved in DNA synthesis. A highly conserved domain of large T antigen (similar to the p53-binding region) exclusively identifies papovavirus, parvovirus, and papillomaviruses from all other larger DNA viruses and implies a conserved interaction with host regulatory genes. In this report, we show that 3 to 6 mM butyrate, a general cell cycle blocker implicated in inhibition of the G1-to-S transition, inhibits DNA replication of polyomavirus and human papillomavirus type 11 but not the replication of larger DNA viruses such as adenovirus types 2 and 5, herpes simplex virus type 1, Epstein-Barr virus, and cytomegalovirus, which all bypass the butyrate-mediated cell cycle block. This butyrate effect on polyomavirus replication is not cell type specific, nor does it depend on the p53 or Rb gene, as inhibition was seen in fibroblasts with intact or homozygous deleted p53 or Rb, 3T6 cells, keratinocytes, C2C12 myoblasts, and 3T3-L1 adipocytes. In addition, butyrate did not inhibit expression of polyomavirus T antigen. The antiviral effect of butyrate involves a form of imprinted state, since pretreatment of cells with 3 mM butyrate inhibits human papillomavirus type 11 DNA replication for at least 96 h after its removal. Butyrate, therefore, serves as a molecular tool in dissecting the life cycle of smaller DNA viruses from that of the larger DNA viruses in relation to the cell cycle.  相似文献   

15.
The oncogenic potential of polyomavirus in newborn rats could not be expressed by a genome encoding only the middle T antigen but required the presence of one of the other two viral early genes, small T or large T. The tumorigenicity defect could also be complemented by other viral or cellular genes that are known to be implicated in immortalization and establishment functions. The simian virus 40(cT)-3 mutant (R. E. Lanford and J. S. Butel, Cell 37:801-813, 1984), which fails to localize to the nucleus, has the capacity to complement polyomavirus middle T in tumorigenesis and to immortalize primary rat embryo fibroblasts when it was cotransfected in the presence of pSV2-neo. Our data suggested that under the conditions of DNA-mediated tumor induction and cotransfection with a dominant selection marker, the cellular alterations achieved by nonnuclear oncogenes such as polyomavirus small T and simian virus 40(cT)-3 were sufficient to complement polyomavirus middle T in transformation and tumorigenesis.  相似文献   

16.
Immortalization of primary cells by DNA tumor viruses   总被引:14,自引:0,他引:14  
Cellular senescence is characterized by a decline in sensitivity to growth factors resulting in cessation of cellular growth. The expression of cellular or viral oncogenes may result in the establishment of cell lines with unlimited proliferative potential ("immortalization"). A variety of viral and cellular oncogenes have been reported to immortalize cells, suggesting that multiple mechanisms may lead to an escape from senescence. Immortalization has been reported to occur as a result of an interaction of viral proteins with cellular suppressor gene products or may result from the elevated expression of "transforming" oncoproteins (such as the polyomavirus middle-t antigen). Here we speculate that a selection for cells with a further decreased probability of cell cycle withdrawal can occur during the growth of cells expressing viral early genes, resulting in a process of tumor progression. Explaining immortalization in terms of mitogenic stimulation due to the expression of viral oncogenes followed by genetic/epigenetic changes may help to explain why lytic DNA viruses have a biological activity which may not be necessary for their life cycle.  相似文献   

17.
18.
19.
The state and expression of the hamster polyomavirus genome in a large panel of virus-induced lymphomas have been investigated. The viral genome is present within tumor cells either as abundant nonrandomly deleted extrachromosomal copies or as a single copy integrated into cellular DNA. We show that these two physical states are likely to be functionally equivalent: first, deletion and integration of the viral genome both inactivate the late coding region; second, the amount of viral early RNAs yielded by a single integrated copy appears to be very similar to that associated with several thousands of extrachromosomal copies of the viral genome. These data underline two essential requisites for hamster polyomavirus to become lymphomagenous: suppression of the late coding functions of the viral genome and expression of the viral oncogenes above a threshold level.  相似文献   

20.
Cai X  Li G  Laimins LA  Cullen BR 《Journal of virology》2006,80(21):10890-10893
It has recently become clear that several pathogenic DNA viruses express virally encoded microRNAs in infected cells. In particular, numerous microRNAs have been identified in a range of human and animal herpesviruses, and individual microRNAs have also been identified in members of the polyoma- and adenovirus families. Although their functions remain largely unknown, it seems likely that these viral microRNAs play an important role in viral replication in vivo. Here we present an analysis of the microRNAs expressed in human cells during the latent and productive phases of the human papillomavirus genotype 31 (HPV31) replication cycle. Although over 500 cellular microRNAs were cloned and identified, not a single HPV31-specific microRNA was obtained. We therefore concluded that HPV31, and possibly human papillomaviruses in general, does not express viral microRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号