共查询到20条相似文献,搜索用时 0 毫秒
1.
Background
The recent accumulation of closely related genomic sequences provides a valuable resource for the elucidation of the evolutionary histories of various organisms. However, although numerous alignment calculation and visualization tools have been developed to date, the analysis of complex genomic changes, such as large insertions, deletions, inversions, translocations and duplications, still presents certain difficulties. 相似文献2.
Murdock AG 《American journal of botany》2008,95(5):626-641
Closely related outgroups are optimal for rooting phylogenetic trees; however, such ideal outgroups are not always available. A phylogeny of the marattioid ferns (Marattiaceae), an ancient lineage with no close relatives, was reconstructed using nucleotide sequences of multiple chloroplast regions (rps4 + rps4-trnS spacer, trnS-trnG spacer + trnG intron, rbcL, atpB), from 88 collections, selected to cover the broadest possible range of morphologies and geographic distributions within the extant taxa. Because marattioid ferns are phylogenetically isolated from other lineages, and internal branches are relatively short, rooting was problematic. Root placement was strongly affected by long-branch attraction under maximum parsimony and by model choice under maximum likelihood. A multifaceted approach to rooting was employed to isolate the sources of bias and produce a consensus root position. In a statistical comparison of all possible root positions with three different outgroups, most root positions were not significantly less optimal than the maximum likelihood root position, including the consensus root position. This phylogeny has several important taxonomic implications for marattioid ferns: Marattia in the broad sense is paraphyletic; the Hawaiian endemic Marattia douglasii is most closely related to tropical American taxa; and Angiopteris is monophyletic only if Archangiopteris and Macroglossum are included. 相似文献
3.
In this study we evaluated the performance of the cytochrome c oxidase subunit II (COII) mitochondrial gene as a tool for inferring phylogenetic relationships among platyrrhines. Twenty-nine COII sequences were examined in seven platyrrhine genera ( Alouatta , Ateles , Lagothrix , Brachyteles , Cebus , Saimiri , and Aotus ) employing parsimony and distance methods. Phylogenetic signal (g1 ) was present in all codon positions, despite the transitional saturation detected at the third position. In tree reconstructions bootstrap support values decreased abruptly above the generic level. Parsimony trees based on weighted transversions (tv : ts, 10 : 1) at the third position showed similar topologies. The utility of COII in phylogenetic studies among platyrrhines seems to be limited, due to its low rate of replacement substitutions and a relatively fast saturation of silent substitutions at third codon positions. Our data suggest that its main utility in platyrrhine systematics lies at the intrageneric level. 相似文献
4.
SciRoKo is a user-friendly software tool for the identification of microsatellites in genomic sequences. The combination of an extremely fast search algorithm with a built-in summary statistic tool makes SciRoKo an excellent tool for full genome analysis. Compared to other already existing tools, SciRoKo also allows the analysis of compound microsatellites. AVAILABILITY: free for use: www.kofler.or.at/Bioinformatics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
5.
6.
Correa R Stanga J Larget B Roznowski A Shu G Dilkes B Baum DA 《The New phytologist》2012,193(2):494-503
? Transgenomics is the process of introducing genomic clones from a donor species into a recipient species and then screening the resultant transgenic lines for phenotypes of interest. This method might allow us to find genes involved in the evolution of phenotypic differences between species as well as genes that have the potential to contribute to reproductive isolation: potential speciation genes. ? More than 1100 20-kbp genomic clones from Leavenworthia alabamica were moved into Arabidopsis thaliana by transformation. After screening a single primary transformant for each line, clones associated with mutant phenotypes were tested for repeatability and co-segregation. ? We found 84 clones with possible phenotypic effects, of which eight were repeatedly associated with the same phenotype. One clone, 11_11B, co-segregated with a short fruit phenotype. Further study showed that 11_11B affects seed development, with as much as one-third of the seeds aborted in some fruit. ? Transgenomics is a viable strategy for discovering genes of evolutionary interest. We identify methods to reduce false positives and false negatives in the future. 11_11B can be viewed as a potential speciation gene, illustrating the value of transgenomics for studying the molecular basis of reproductive isolation. 相似文献
7.
eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data 总被引:1,自引:0,他引:1 下载免费PDF全文
The introduction of multilocus sequence typing (MLST) for the precise characterization of isolates of bacterial pathogens has had a marked impact on both routine epidemiological surveillance and microbial population biology. In both fields, a key prerequisite for exploiting this resource is the ability to discern the relatedness and patterns of evolutionary descent among isolates with similar genotypes. Traditional clustering techniques, such as dendrograms, provide a very poor representation of recent evolutionary events, as they attempt to reconstruct relationships in the absence of a realistic model of the way in which bacterial clones emerge and diversify to form clonal complexes. An increasingly popular approach, called BURST, has been used as an alternative, but present implementations are unable to cope with very large data sets and offer crude graphical outputs. Here we present a new implementation of this algorithm, eBURST, which divides an MLST data set of any size into groups of related isolates and clonal complexes, predicts the founding (ancestral) genotype of each clonal complex, and computes the bootstrap support for the assignment. The most parsimonious patterns of descent of all isolates in each clonal complex from the predicted founder(s) are then displayed. The advantages of eBURST for exploring patterns of evolutionary descent are demonstrated with a number of examples, including the simple Spain(23F)-1 clonal complex of Streptococcus pneumoniae, "population snapshots" of the entire S. pneumoniae and Staphylococcus aureus MLST databases, and the more complicated clonal complexes observed for Campylobacter jejuni and Neisseria meningitidis. 相似文献
8.
Luciane Mendes Hatadani James O. McInerney Hermes Fonseca de Medeiros Ana Carolina Martins Junqueira Ana Maria de Azeredo-Espin Louis Bernard Klaczko 《Molecular phylogenetics and evolution》2009,51(3):595-600
We suggest a new phylogenetic hypothesis for the tripunctata radiation based on sequences of mitochondrial genes. Phylogenetic trees were reconstructed by parsimony, maximum likelihood and Bayesian methods. We performed tests for hypotheses of monophyly for taxonomic groups and other specific hypotheses. Results reject the monophyly for the tripunctata group whereas monophyly is not rejected for the tripunctata radiation and other specific groups within the radiation. Although most of the basal nodes were unresolved we were able to identify four clusters within the tripunctata radiation. These results suggest the collection of additional data before a proper taxonomic revision could be proposed. 相似文献
9.
《Saudi Journal of Biological Sciences》2022,29(3):1618-1627
Genus Pinus is a widely dispersed genus of conifer plants in the Northern Hemisphere. However, the inadequate accessibility of genomic knowledge limits our understanding of molecular phylogeny and evolution of Pinus species. In this study, the evolutionary features of complete plastid genome and the phylogeny of the Pinus genus were studied. A total of thirteen divergent hotspot regions (trnk-UUU, matK, trnQ-UUG, atpF, atpH, rpoC1, rpoC2, rpoB, ycf2, ycf1, trnD-GUC, trnY-GUA, and trnH-GUG) were identified that would be utilized as possible genetic markers for determination of phylogeny and population genetics analysis of Pinus species. Furthermore, seven genes (petD, psaI, psaM, matK, rps18, ycf1, and ycf2) with positive selection site in Pinus species were identified. Based on the whole genome this phylogenetic study showed that twenty-four Pinus species form a significant genealogical clade. Divergence time showed that the Pinus species originated about 100 million years ago (MYA) (95% HPD, 101.76.35–109.79 MYA), in lateral stages of Cretaceous. Moreover, two of the subgenera are consequently originated in 85.05 MYA (95% HPD, 81.04–88.02 MYA). This study provides a phylogenetic relationship and a chronological framework for the future study of the molecular evolution of the Pinus species. 相似文献
10.
Background
Metagenomics has a great potential to discover previously unattainable information about microbial communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree.Results
We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction (TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of microbial structure. Compared with other available methods designed for estimating taxonomic composition at a relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn’s disease dataset. Our results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the study of oral cavity and the Crohn’s disease.Conclusions
By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a metagenomic sample.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2105-15-242) contains supplementary material, which is available to authorized users. 相似文献11.
L. AUBER F.R.S.E. 《Zoological Journal of the Linnean Society》1964,45(305):245-250
The Pittidae of the subgenus Cervinipitta are practically uniform in the colour pattern of their plumage, but the African forms differ from the remaining (namely, Asian and Australasian) forms of the subgenus in the structure and pigmentation of their green (Tyndall-coloured) feathers.
In these feathers, the Africans appear to show certain ancestral characters: small numbers of medullary cells, some of which may contain small, fluctuating amounts of dark-pigmented granules.
These characters coexist there with specialized features, which may intensify the colour effect: absence of the granules from most medullary cells and aggregation of such granules in lateral portions of the cortex.
In the Eastern forms of the subgenus, the number of medullary cells appears to be secondarily increased, and the amount of granules enlarged and concentrated in axial cells of the medulla–again serving the intensification of the colour.
In this way the African and the Eastern branches of the subgenus have undergone divergent specialization in histological details, but show practically identical colour effects. However, the African branch appears to have retained some primitive characters and shows incompletely stabilized conditions. 相似文献
In these feathers, the Africans appear to show certain ancestral characters: small numbers of medullary cells, some of which may contain small, fluctuating amounts of dark-pigmented granules.
These characters coexist there with specialized features, which may intensify the colour effect: absence of the granules from most medullary cells and aggregation of such granules in lateral portions of the cortex.
In the Eastern forms of the subgenus, the number of medullary cells appears to be secondarily increased, and the amount of granules enlarged and concentrated in axial cells of the medulla–again serving the intensification of the colour.
In this way the African and the Eastern branches of the subgenus have undergone divergent specialization in histological details, but show practically identical colour effects. However, the African branch appears to have retained some primitive characters and shows incompletely stabilized conditions. 相似文献
12.
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species. 相似文献
13.
Background
Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.Results
NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.Conclusions
The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html. 相似文献14.
MapLinker is an analysis tool, as well as a browsing interface, that facilitates integration of whole genome sequence assembly with a clone-based physical map. Using the locations of sequence markers on the physical map, MapLinker generates a tentative sequence map of the genome that serves to verify the map and to guide genome-wide finishing. 相似文献
15.
Yingqi Liu Hu Li Fan Song Yisheng Zhao John‐James Wilson Wanzhi Cai 《Systematic Entomology》2019,44(4):810-819
The higher‐level phylogeny of Pentatomomorpha, the second largest infraorder of true bugs (Hemiptera: Heteroptera), which includes many important agriculture and forestry pests, has been debated for decades. To investigate the phylogeny and evolutionary history of Pentatomomorpha, we assembled new mitochondrial genomes for 46 species through next‐generation sequencing of pooled genomic DNA. Based on a much broader taxon sampling than available previously, Bayesian analyses using a site‐heterogeneous mixture model (CAT+GTR) resolved the higher‐level phylogeny of Pentatomomorpha as (Aradoidea + (Pentatomoidea + (Coreoidea + (Lygaeoidea + Pyrrhocoroidea)))). There was a transition from trnT/trnP to trnP/trnT in the common ancestor of Pyrrhocoroidea, which indicates that this gene rearrangement could be an autapomorphy for Pyrrhocoroidea. Divergence time analyses estimated that Pentatomomorpha originated c. 242 Ma in the Middle Triassic, and most of the recognized superfamilies originated during the Middle Jurassic to Early Cretaceous. The diversification of families within Pentatomomorpha largely coincided with the radiation of angiosperms during the Early Cretaceous. 相似文献
16.
Identification of SNP markers for inferring phylogeny in temperate bamboos (Poaceae: Bambusoideae) using RAD sequencing 总被引:1,自引:0,他引:1
X. Q. Wang L. Zhao D. A. R. Eaton D. Z. Li Z. H. Guo 《Molecular ecology resources》2013,13(5):938-945
Phylogenetic relationships among temperate species of bamboo are difficult to resolve, owing to both the challenge of detecting sufficiently variable markers and their polyploid history. Here, we use restriction site–associated DNA sequencing to identify candidate loci with fixed allelic differences segregating between and within two temperate species of bamboos: Arundinaria faberi and Yushania brevipaniculata. Approximately 27 million paired‐end sequencing reads were generated across four samples. From pooled data, we assembled 67 685 and 70 668 de novo contigs from partial overlap among paired‐end reads, with an average length of 240 and 241 bp for the two species, respectively, which were used to investigate functional classification of RAD tags in a blastx search. Analysed separately by population, we recovered 29 443 putatively orthologous RAD tags shared across the four sampled populations, containing 28 023 sequence variants, of which c. 13 000 are segregating between species, and c. 3000 segregating between populations within each species. Analyses based on these RAD tags yielded robust phylogenetic inferences, even with data set constructed from surprisingly few loci. This study illustrates the potential for reduced‐representation genome data to resolve difficult phylogenetic relationships in temperate bamboos. 相似文献
17.
Outer membrane efflux protein (OMEP) is a suitable molecular marker for resolving the phylogeny and taxonomic status of closely related cyanobacteria 下载免费PDF全文
Dzhemal Moten Tsvetelina Batsalova Diyana Basheva Rumen Mladenov Balik Dzhambazov Ivanka Teneva 《Phycological Research》2018,66(1):31-36
Taxonomy of Cyanobacteria, the oldest phototrophic prokaryotes, is problematic for many years due to their simple morphology, high variability and adaptability to diverse ecological niches. After introduction of the polyphasic approach, which is based on the combination of several criteria (molecular sequencing, morphological and ecological), the whole classification system of these organisms is subject to reorganization. The aim of this study was to evaluate whether the outer membrane efflux protein (OMEP) sequences can be used as a molecular marker for resolving the phylogeny and taxonomic status of closely related cyanobacteria. We have performed phylogenetic analyses based on the amino acid sequences of the OMEP and the DNA sequences of the 16S rRNA gene from 86 cyanobacterial species/strains with completely sequenced genomes. Phylogenetic trees based on the OMEP showed that most of the cyanobacterial species/strains belonging to different genera are clustered in separate clades supported by high bootstrap values. Comparing the OMEP trees with the 16S rDNA tree clearly showed that the OMEP is more suitable marker in resolving phylogenetic relationships within Cyanobacteria at generic and species level. 相似文献
18.
19.
Molecular phylogeny and evolutionary biology of Acrodipsas (Lepidoptera: Lycaenidae) 总被引:1,自引:0,他引:1
Most butterflies in the family Lycaenidae associate with ants but fewer than 3% are myrmecophagous. Larvae of the Australian endemic butterfly genus Acrodipsas parasitise the nests of ants from two subfamilies and, thus, constitute an interesting and uncommon myrmecophagous radiation within the Lepidoptera. Phylogenetic relationships among Acrodipsas species were inferred from fragments of mitochondrial cytochrome oxidase subunits I and II totalling 1155 bp using maximum parsimony and a neighbour joining method. Monophyly of the genus was confirmed, as was the sister genus status of Lucia. Acrodipsas myrmecophila was established as the plesiotypic Acrodipsas species, which together with Acrodipsas brisbanensis parasitises the ancestral dolichoderine host-ants. A speciation event associated with a radical host-ant shift to Myrmicinae occurred in an ancestor of Acrodipsas cuprea but subsequent speciation events may have been driven by climatic fluctuations during the Pleistocene. Modifications to leg morphology in several species were found to be a synapomorphic state, which arose subsequent to the host-shift to Myrmicinae. Minimal genetic variation detected in allopatric species exhibiting divergent morphology suggests that phenotypic variability has been driven by strong environmental selective pressures. As a result, morphological differences between closely related allopatric species have evolved faster than genetic differences, most notably between Acrodipsas arcana and Acrodipsas illidgei. In contrast, sympatric lineages of A. brisbanensis across similar habitats show considerable genetic differentiation, yet have remained phenotypically indistinguishable. Successful amplification of short overlapping fragments of DNA from museum specimens confirms their utility for phylogenetic analysis when the availability of fresh tissue is limited. 相似文献
20.
A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches 总被引:1,自引:0,他引:1
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts. 相似文献