首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H2 production involves consumption of 2H+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2–2.5) that are three pH units lower than the pH limit of growth (pH 5–6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms.

Methods and Principal Findings

We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H2 to 2H+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H2 production and consumption was tested using a H2-specific Clark-type electrode. Hyd-3-dependent H2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H2 consumption was maximal at alkaline pH. H2 production, was unaffected by a shift in external or internal pH. H2 production was associated with hycE expression levels as a function of external pH.

Conclusions

Anaerobic growing cultures of E. coli generate H2 via Hyd-3 at low external pH, and consume H2 via Hyd-2 at high external pH. Hyd-3 proton conversion to H2 is required for acid resistance in anaerobic cultures of E. coli.  相似文献   

3.
Pneumonia associated with Iegionnaires''s disease is initiated in humans after inhalation of contaminated aerosols. In the environment, Legionella pneumophila is thought to survive and multiply as an intracellular parasite within free-living amoeba. In the genome of L. pneumophila Lens, we identified a unique gene, tolC, encoding a protein that is highly homologous to the outer membrane protein TolC of Escherichia coli. Deletion of tolC by allelic exchange in L. pneumophila caused increased sensitivity to various drugs. The complementation of the tolC mutation in trans restored drug resistance, indicating that TolC is involved in multi-drug efflux machinery. In addition, deletion of tolC caused a significant attenuation of virulence towards both amoebae and macrophages. Thus, the TolC protein appears to play a crucial role in virulence which could be mediated by its involvement in efflux pump mechanisms. These findings will be helpful in unraveling the pathogenic mechanisms of L. pneumophila as well as in developing new therapeutic agents affecting the efflux of toxic compounds.  相似文献   

4.
5.
The outer membrane channel TolC is a key component of multidrug efflux and type I secretion transporters in Escherichia coli. Mutational inactivation of TolC renders cells highly susceptible to antibiotics and leads to defects in secretion of protein toxins. Despite impairment of various transport functions, no growth defects were reported in cells lacking TolC. Unexpectedly, we found that the loss of TolC notably impairs cell division and growth in minimal glucose medium. The TolC‐dependent phenotype was further exacerbated by the loss of ygiB and ygiC genes expressed in the same operon as tolC and their homologues yjfM and yjfC located elsewhere on the chromosome. Our results show that this growth deficiency is caused by depletion of the critical metabolite NAD+ and high NADH/NAD+ ratios. The increased amounts of PspA and decreased rates of NADH oxidation in ΔtolC membranes indicated stress on the membrane and dissipation of a proton motive force. We conclude that inactivation of TolC triggers metabolic shutdown in E. coli cells grown in minimal glucose medium. The ΔtolC phenotype is partially rescued by YgiBC and YjfMC, which have parallel functions independent from TolC.  相似文献   

6.
Escherichia coli produces the iron-chelating compound enterobactin to enable growth under iron-limiting conditions. After biosynthesis, enterobactin is released from the cell. However, the enterobactin export system is not fully understood. Previous studies have suggested that the outer membrane channel TolC is involved in enterobactin export. There are several multidrug efflux transporters belonging to resistance-nodulation-cell division (RND) family that require interaction with TolC to function. Therefore, several RND transporters may be responsible for enterobactin export. In this study, we investigated whether RND transporters are involved in enterobactin export using deletion mutants of multidrug transporters in E. coli. Single deletions of acrB, acrD, mdtABC, acrEF, or mdtEF did not affect the ability of E. coli to excrete enterobactin, whereas deletion of tolC did affect enterobactin export. We found that multiple deletion of acrB, acrD, and mdtABC resulted in a significant decrease in enterobactin export and that plasmids carrying the acrAB, acrD, or mdtABC genes restored the decrease in enterobactin export exhibited by the ΔacrB acrD mdtABC mutant. These results indicate that AcrB, AcrD, and MdtABC are required for the secretion of enterobactin.  相似文献   

7.
Escherichia coli mutants with improved organic solvent tolerance levels showed high levels of outer membrane protein TolC and inner membrane protein AcrA. The TolC level was regulated positively by MarA, Rob, or SoxS. A possible mar-rob-sox box sequence was found upstream of the tolC gene. These findings suggest that tolC is a member of the mar-sox regulon responsive to stress conditions. When a defective tolC gene was transferred to n-hexane- or cyclohexane-tolerant strains by P1 transduction, the organic solvent tolerance level was lowered dramatically to the decane-tolerant and nonane-sensitive level. The tolerance level was restored by transformation of the transductants with a wild-type tolC gene. Therefore, it is evident that TolC is essential for E. coli to maintain organic solvent tolerance.  相似文献   

8.
This work describes the novel use of tolC as a selectable/counter-selectable marker for the facile modification of DNA in Escherichia coli. Expression of TolC (an outer membrane protein) confers relative resistance to toxic small molecules, while its absence renders the cell tolerant to colicin E1. These features, coupled with the λredgam recombination system, allow for selection of tolC insertions/deletions anywhere on the E. coli chromosome or on plasmid DNA. This methodology obviates the need for minimal growth media, specialized wash protocols and the lengthy incubation times required by other published recombineering methods. As a rigorous test of the TolC selection system, six out of seven 23S rRNA genes were consecutively and seamlessly removed from the E. coli chromosome without affecting expression of neighboring genes within the complex rrn operons. The resulting plasmid-free strain retains one 23S rRNA gene (rrlC) in its natural location on the chromosome and is the first mutant of its kind. These new rRNA mutants will be useful in the study of rRNA gene regulation and ribosome function. Given its high efficiency, low background and facility in rich media, tolC selection is a broadly applicable method for the modification of DNA by recombineering.  相似文献   

9.
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram‐negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild‐type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9‐glucose medium but that adding iron restores wild‐type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron‐dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC‐directed export or efflux, to eliminate extraneous physiological effects.  相似文献   

10.
11.
12.
Escherichia coli has nine inner membrane efflux pumps which complex with the outer membrane protein TolC and cognate membrane fusion proteins to form tripartite transperiplasmic pumps with diverse functions, including the expulsion of antibiotics. We recently observed that tolC mutants have elevated activities for three stress response regulators, MarA, SoxS, and Rob, and we suggested that TolC-dependent efflux is required to prevent the accumulation of stressful cellular metabolites. Here, we used spy::lacZ fusions to show that two systems for sensing/repairing extracytoplasmic stress, BaeRS and CpxARP, are activated in the absence of TolC-dependent efflux. In either tolC mutants or bacteria with mutations in the genes for four TolC-dependent efflux pumps, spy expression was increased 6- to 8-fold. spy encodes a periplasmic chaperone regulated by the BaeRS and CpxARP stress response systems. The overexpression of spy in tolC or multiple efflux pump mutants also depended on these systems. spy overexpression was not due to acetate, ethanol, or indole accumulation, since external acetate had only a minor effect on wild-type cells, ethanol had a large effect that was not CpxA dependent, and a tolC tnaA mutant which cannot accumulate internal indole overexpressed spy. We propose that, unless TolC-dependent pumps excrete certain metabolites, the metabolites accumulate and activate at least five different stress response systems.  相似文献   

13.
The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.  相似文献   

14.
l-Cysteine is an important amino acid in terms of its industrial applications. We previously found marked production of l-cysteine directly from glucose in recombinant Escherichia coli cells by the combination of enhancing biosynthetic activity and weakening the degradation pathway. Further improvements in l-cysteine production are expected to use the amino acid efflux system. Here, we identified a novel gene involved in l-cysteine export using a systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection). Among the 3,985 nonessential gene mutants, tolC-disrupted cells showed hypersensitivity to l-cysteine relative to wild-type cells. Gene expression analysis revealed that the tolC gene encoding the outer membrane channel is essential for l-cysteine tolerance in E. coli cells. However, l-cysteine tolerance is not mediated by TolC-dependent drug efflux systems such as AcrA and AcrB. It also appears that other outer membrane porins including OmpA and OmpF do not participate in TolC-dependent l-cysteine tolerance. When a low-copy-number plasmid carrying the tolC gene was introduced into E. coli cells with enhanced biosynthesis, weakened degradation, and improved export of l-cysteine, the transformants exhibited more l-cysteine tolerance and production than cells carrying the vector only. We concluded that TolC plays an important role in l-cysteine tolerance probably due to its export ability and that TolC overexpression is effective for l-cysteine production in E. coli. Natthawut Wiriyathanawudhiwong and Iwao Ohtsu contributed equally to this work.  相似文献   

15.

Background

Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer.

Methods

In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC). PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase), chloramphenicol (catI, catII, catIII and cml), tetracycline (tetA, tetB, tetC, tetD, tet E and tetG), and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17).

Results

The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR) was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p < 0.001). Resistance to ciprofloxacin and florfenicol were identified mostly within the MDR phenotypes. Resistance genes included dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279), 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8%) found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred.

Conclusions

Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to public health.  相似文献   

16.

Background

The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA).

Results

In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS.

Conclusion

GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.  相似文献   

17.
18.
Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.  相似文献   

19.
RND (resistance-nodulation-division) family transporters in Gram-negative bacteria frequently pump out a wide range of inhibitors and often contribute to multidrug resistance to antibiotics and biocides. An archetypal RND pump of Escherichia coli, AcrB, is known to exist as a homotrimer, and this construction is essential for drug pumping through the functionally rotating mechanism. MdtBC, however, appears different because two pump genes coexist within a single operon, and genetic deletion data suggest that both pumps must be expressed in order for the drug efflux to occur. We have expressed the corresponding genes, with one of them in a His-tagged form. Copurification of MdtB and MdtC under these conditions showed that they form a complex, with an average stoichiometry of 2:1. Unequivocal evidence that only the trimer containing two B protomers and one C protomer is active was obtained by expressing all possible combinations of B and C in covalently linked forms. Finally, conversion into alanine of the residues, known to form a proton translocation pathway in AcrB, inactivated transport only when made in MdtB, not when made in MdtC, a result suggesting that MdtC plays a different role not directly involved in drug binding and extrusion.Bacterial multidrug resistance is a major public health problem (10, 17). One widespread resistance mechanism involves the multidrug resistance (MDR) transporters. Among these, the resistance-nodulation-cell division (RND) family transporters, such as the AcrAB-TolC system in Escherichia coli, play a major role in drug resistance in Gram-negative bacteria because they allow the direct extrusion of drug molecules into extracellular space, and because they sometimes confer an increased level of tolerance to an astonishingly wide range of toxic compounds (18). In general, an RND-type exporter protein (such as AcrB), located in the inner membrane, forms a tripartite complex with a periplasmic adaptor protein, such as AcrA, and a homotrimeric outer membrane channel, such as TolC (18). The drug efflux process requires the presence of all three components. The crystallographic structures of AcrB (13, 14, 22, 24), AcrA (11, 27), and TolC (2, 8) are known, and models of the tripartite complex have been proposed (6, 27).AcrB is a homotrimeric transporter (14) located in the inner membrane and uses the proton gradient as the energy source (31). The homotrimeric structure is thought to be functionally important, or even essential, as each protomer appears to undergo a series of mandatory conformational alterations during the process of drug export, often called “functionally rotating mechanism,” as deduced from the structure of the asymmetric trimers of AcrB (13, 22, 24). This mechanism was also supported by the observation that, in a trimer in which protomers were covalently linked to each other, inactivation of one protomer alone abolishes the activity of the entire trimeric complex (29).Not all RND-type transporters, however, follow this homotrimeric organization. The mdtABC genes of E. coli encode an RND system that is unusual in that it contains two different RND pump genes, mdtB and mdtC, in addition to its own adaptor gene, mdtA. Previous genetic studies have demonstrated that the deletion of either of the two RND pump genes abolishes (1) the resistance to β-lactams, novobiocin, and bile salt derivatives, like deoxycholate, or narrows the range of pump substrates (15), a result suggesting that the functional unit is likely a heteromultimeric pump formed by MdtB/MdtC proteins. However, no direct data have so far been presented supporting the interaction between these proteins or the stoichiometry of the complex. Because the heterooligomeric composition of this pump was unexpected based on the accepted notion of how the homotrimeric pump functions by the functionally rotating mechanism, we examined here the nature of the MdtBC complex in detail.In this study, we first purified the oligomeric transporter by labeling either MdtB or MdtC with a His tag. We obtained a trimeric complex(es) containing both MdtB and MdtC in an approximately 2:1 ratio. However, we could not rule out the possibility that there were mixtures of trimers containing different ratios of the B and C proteins. We therefore utilized the recently introduced technology of creating covalently linked trimers (29), and we show here that the only active trimers are those containing two units of MdtB and one unit of MdtC.  相似文献   

20.

Background

Previous studies have shown that disruption of GABA signaling in mice via mutations in the Gad1, Gabrb3 or Viaat genes leads to the development of non-neural developmental defects such as cleft palate. Studies of the Gabrb3 and Gad1 mutant mice have suggested that GABA function could be required either in the central nervous system or in the palate itself for normal palatogenesis.

Methodology/Principal Findings

To further examine the role of GABA signaling in palatogenesis we used three independent experimental approaches to test whether Gad1 or Viaat function is required in the fetal CNS for normal palate development. We used oral explant cultures to demonstrate that the Gad1 and Viaat mutant palates were able to undergo palatogenesis in culture, suggesting that there is no defect in the palate tissue itself in these mice. In a second series of experiments we found that the GABAA receptor agonist muscimol could rescue the cleft palate phenotype in Gad1 and Viaat mutant embryos. This suggested that normal multimeric GABAA receptors in the CNS were necessary for normal palatogenesis. In addition, we showed that CNS-specific inactivation of Gad1 was sufficient to disrupt palate development.

Conclusions/Significance

Our results are consistent with a role for Gad1 and Viaat in the central nervous system for normal development of the palate. We suggest that the alterations in GABA signaling lead to non-neural defects such as cleft palate as a secondary effect due to alterations in or elimination of fetal movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号