首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective antibodies.

Principal Findings

Here we have developed a protocol to selectively reduce the CD4+ T cell response against viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help, tolerisation did not impair CD8+ T cell responses.

Conclusions

This result reveals a novel “negative vaccination” strategy where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic virus infections.  相似文献   

2.

Background

Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4+ regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown.

Methodology/Principal Findings

HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4+ T cells. The production of IFN-γ was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4+ T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV+ hepatocytes upregulated the production of TGF-β and blockade of TGF-β abrogated Treg phenotype and function.

Conclusions/Significance

These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses.  相似文献   

3.

Objective

The primary objective was to assess the effect of MVC intensification on latently infected CD4+ T cells in chronically HIV-1-infected patients receiving antiretroviral therapy.

Methods

We performed an open-label pilot phase II clinical trial involving chronically HIV-1-infected patients receiving stable antiretroviral therapy whose regimen was intensified with 48 weeks of maraviroc therapy. We analyzed the latent reservoir, the residual viremia and episomal 2LTR DNA to examine the relationship between these measures and the HIV-1 latent reservoir, immune activation, lymphocyte subsets (including effector and central memory T cells), and markers associated with bacterial translocation.

Results

Overall a non significant reduction in the size of the latent reservoir was found (p = 0.068). A mean reduction of 1.82 IUPM was observed in 4 patients with detectable latent reservoir at baseline after 48 weeks of intensification. No effect on plasma residual viremia was observed. Unexpectedly, all the patients had detectable 2LTR DNA circles at week 24, while none of them showed those circles at the end of the study. No changes were detected in CD4+ or CD8+ counts, although a significant decrease was found in the proportion of HLA-DR+/CD38+ CD4+ and CD8+ T-cells. LPS and sCD14 levels increased.

Conclusions

Intensification with MVC was associated with a trend to a decrease in the size of the latent HIV-1 reservoir in memory T cells. No impact on residual viremia was detected. Additional studies with larger samples are needed to confirm the results.

Trial Registration

ClinicalTrials.gov NCT00795444  相似文献   

4.

Background

The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.

Methodology

The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.

Findings

Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.

Conclusion

Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.  相似文献   

5.

Objective

Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease.

Methods

Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot.

Results

We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154.

Conclusion

Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers.  相似文献   

6.

Background and Aims

Hepatitis C Virus (HCV)-related liver disease progresses more rapidly in individuals co-infected with Human Immunodeficiency Virus-1 (HIV), although the underlying immunologic mechanisms are unknown. We examined whether HIV-specific T-cells are identified in the liver of HCV/HIV co-infected individuals and promote liver inflammation through bystander immune responses.

Methods

Ex-vivo intra-hepatic lymphocytes from HCV mono-infected and HCV/HIV co-infected individuals were assessed for immune responses to HIV and HCV antigens by polychromatic flow cytometry.

Results

HCV/HIV liver biopsies had similar frequencies of lymphocytes but lower percentages of CD4+ T-cells compared to HCV biopsies. In co-infection, intra-hepatic HIV-specific CD8+ and CD4+ T-cells producing IFN-γ and TNF-α were detected and were comparable in frequency to those that were HCV-specific. In co-infected individuals, viral-specific CD8+ T-cells produced more of the fibrogenic cytokine, TNF-α. In both mono- and co-infected individuals, intra-hepatic HCV-specific T-cells were poorly functional compared to HIV-specific T-cells. In co-infection, HAART was not associated with a reconstitution of intra-hepatic CD4+ T-cells and was associated with reduction in both HIV and HCV-specific intra-hepatic cytokine responses.

Conclusion

The accumulation of functional HIV-specific T-cells in the liver during HCV/HIV co-infection may represent a bystander role for HIV in inducing faster progression of liver disease.  相似文献   

7.

Background

In contrast to intestinal CD4+ regulatory T cells (Tregs), the generation and function of immunomodulatory intestinal CD8+ T cells is less well defined. To dissect the immunologic mechanisms of CD8+ T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied.

Methodology and Principal Findings

HA-specific CD8+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8+Foxp3+ T cells. Antigen-experienced CD8+ T cells in this transgenic mouse model suppressed the proliferation of CD8+ and CD4+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4+ Treg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8+Foxp3+ T cells.

Conclusion and Significance

We demonstrate that gut specific antigen presentation is sufficient to induce CD8+ Tregs in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.  相似文献   

8.

Background

It is generally accepted that CD8+ T cell responses play an important role in control of immunodeficiency virus replication. The association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8+ cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8+ cells, implicating that these cells actively suppress viral replication in ECs.

Methods and Findings

Here we show that three ECs in that study made at least seven robust CD8+ T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8+ T cells in all of the newly identified epitopes in a cohort of chronically infected macaques.

Conclusions

Together, our data suggest that Mamu-B*08-restricted CD8+ T cell responses effectively control replication of pathogenic SIVmac239. All seven regions encoding Mamu-B*08-restricted CD8+ T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8+ T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8+ T cell-mediated control of HIV replication in humans.  相似文献   

9.

Objective

To explore the capacity of human CD14+CD16++ and CD14++CD16- monocytes to phagocyte iron-oxide nanoparticles in vitro.

Methods

Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers.

Results

Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14++CD16- monocytes displayed a significantly higher uptake compared to CD14+CD16++ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14+CD16++ and CD14++CD16- monocytes differently.

Conclusion

Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.  相似文献   

10.

Background

Maraviroc treatment for HIV-1 infected patients results in larger CD4+ T cell rises than are attributable to its antiviral activity alone. We investigated whether this is due to modulation of T cell activation and inflammation.

Methods and Findings

Thirty maraviroc-treated patients from the Maraviroc versus Efavirenz Regimens as Initial Therapy (MERIT) study were randomly selected from among those who had CCR5-tropic (R5) HIV on screening and achieved undetectable HIV RNA (<50 copies/mL) by Week 48. Efavirenz-treated controls were matched for baseline characteristics to the maraviroc-treated patients selected for this substudy. Changes in immune activation and inflammation markers were examined for associations with CD4+ T cell changes. Maraviroc treatment tended to result in more rapid decreases in CD38 expression on CD4+ T cells and in plasma D-dimer concentrations than did treatment with efavirenz. The proportion of patients with high-sensitivity C-reactive protein >2 µg/mL increased from 45% to 66% in the efavirenz arm, but remained constant in the maraviroc arm (P = 0.033). Decreases in CD38 expression on CD8+ T cells were correlated with CD4+ T cell rises for maraviroc treatment (r = −0.4, P = 0.048), but not for treatment with efavirenz.

Conclusions

Maraviroc-treated patients had earlier, modest decreases in certain markers of immune activation and inflammation, although in this small study, many of the differences were not statistically significant. Levels of high-sensitivity C-reactive protein remained constant in the maraviroc arm and increased in the efavirenz arm. Decreases in immune activation correlated with increased CD4+ T cell gains.

Trial Registration

ClinicalTrials.gov NCT00098293  相似文献   

11.

Background

HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART.

Principal Findings

We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a.

Significance

There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection.  相似文献   

12.

Background

In HIV-infected patients on long-term HAART, virus persistence in resting long-lived CD4 T cells is a major barrier to curing the infection. Cell quiescence, by favouring HIV latency, reduces the risk of recognition and cell destruction by cytotoxic lymphocytes. Several cell-activation-based approaches have been proposed to disrupt cell quiescence and then virus latency, but these approaches have not eradicated the virus. CD4+CD25+ regulatory T cells (Tregs) are a CD4+ T-cell subset with particular activation properties. We investigated the role of these cells in virus persistence in patients on long-term HAART.

Methodology/Principal Findings

We found evidence of infection of resting Tregs (HLADRCD69CD25hiFoxP3+CD4+ T cells) purified from patients on prolonged HAART. HIV DNA harbouring cells appear more abundant in the Treg subset than in non-Tregs. The half-life of the Treg reservoir was estimated at 20 months. Since Tregs from patients on prolonged HAART showed hyporesponsiveness to cell activation and inhibition of HIV-specific cytotoxic T lymphocyte-related functions upon activation, therapeutics targeting cell quiescence to induce virus expression may not be appropriate for purging the Treg reservoir.

Conclusions

Our results identify Tregs as a particular compartment within the latent reservoir that may require a specific approach for its purging.  相似文献   

13.

Background

Hepatitis E is a major public health problem in the developing countries. Pathogenesis of hepatitis E virus (HEV) infection is poorly understood.

Methods

This case-control study included 124 Hepatitis E patients (46 acute and 78 recovered), 9 with prior exposure to HEV and 71 anti-HEV negative healthy controls. HEV induced CTL response by Elispot, cytokines/chemokines quantitation by Milliplex assay and peripheral CD4+ & CD8+ T cell frequencies by flow cytometry were assessed.

Results

Among the patient categories, HEV specific IFN-γ responses as recorded by Elispot were comparable. Comparisons of cytokines/chemokines revealed significantly high levels of IL-1α and sIL-2Rα during acute phase. Circulating peripheral CD4/CD8+ T-cell subsets in acute and recovered individuals were comparable compared to controls, while among patient categories CD8+T cell subset was significantly higher in recovered individuals.

Conclusions

Our findings suggest that IL-1α and sIL-2Rα play a role in the pathogenesis of acute Hepatitis E infection. Lack of robust HEV ORF2-specific CTL response in the peripheral blood of HEV infected patients during the acute and recovered phases of the disease may be associated with involvement of innate immune cells/localization of the immune events at the site of infection.  相似文献   

14.

Background

Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB.

Methods

Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells.

Results

CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells.

Conclusions

Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence.  相似文献   

15.

Background

Previously, we identified a set of HLA-A020.1-restricted trans-sialidase peptides as targets of CD8+ T cell responses in HLA-A0201+ individuals chronically infected by T. cruzi.

Methods and Findings

Herein, we report the identification of peptides encoded by the same trans-sialidase gene family that bind alleles representative of the 6 most common class I HLA-supertypes. Based on a combination of bioinformatic predictions and HLA-supertype considerations, a total of 1001 epitopes predicted to bind to HLA A01, A02, A03, A24, B7 and B44 supertypes was selected. Ninety-six supertype-binder epitopes encoded by multiple trans-sialidase genes were tested for the ability to stimulate a recall CD8+ T cell response in the peripheral blood from subjects with chronic T. cruzi infection regardless the HLA haplotype. An overall hierarchy of antigenicity was apparent, with the A02 supertype peptides being the most frequently recognized in the Chagas disease population followed by the A03 and the A24 supertype epitopes. CD8+ T cell responses to promiscuous epitopes revealed that the CD8+ T cell compartment specific for T. cruzi displays a functional profile with T cells secreting interferon-γ alone as the predominant pattern and very low prevalence of single IL-2-secreting or dual IFN-γ/IL-2 secreting T cells denoting a lack of polyfunctional cytokine responses in chronic T. cruzi infection.

Conclusions

This study identifies a set of T. cruzi peptides that should prove useful for monitoring immune competence and changes in infection and disease status in individuals with chronic Chagas disease.  相似文献   

16.

Background

A test for diagnosis of active Tuberculosis (TB) from peripheral blood could tremendously improve clinical management of patients.

Methods

Of 178 prospectively enrolled patients with possible TB, 60 patients were diagnosed with pulmonary and 27 patients with extrapulmonary TB. The frequencies of Mycobacterium tuberculosis (MTB) specific CD4+ T cells and CD8+ T cells producing cytokines were assessed using overnight stimulation with purified protein derivate (PPD) or early secretory antigenic target (ESAT)-6, respectively.

Results

Among patients with active TB, an increased type 1 cytokine profile consisting of mainly CD4+ T cell derived interferon (IFN)-γ was detectable. Despite contributing to the cytokine profile as a whole, the independent diagnostic performance of one cytokine producing T cells as well as polyfunctional T cells was poor. IFN-γ/Interleukin(IL)-2 cytokine ratios discriminated best between active TB and other diseases.

Conclusion

T cells producing one cytokine and polyfunctional T cells have a limited role in diagnosis of active TB. The significant shift from a “memory type” to an “effector type” cytokine profile may be useful for further development of a rapid immune-diagnostic tool for active TB.  相似文献   

17.

Background

Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline''s functions are not well defined.

Methods

Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied.

Results

Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation.

Conclusion

Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation.  相似文献   

18.

Background

As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients.

Methods and Findings

To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-260–74 epitope and against the new epitope TRP-2149–163. Importantly, human T cells specifically recognizing target cells loaded with the TRP-2149–163-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1284–298 as a new HLA-DRB1*0301-restricted CD4+ T cell epitope.

Conclusions

Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.  相似文献   

19.
Yanaba K  Asano Y  Tada Y  Sugaya M  Kadono T  Sato S 《PloS one》2012,7(3):e34587

Background

Bortezomib is a proteasome inhibitor that has shown impressive efficacy in the treatment of multiple myeloma. In mice, the addition of dextran sulfate sodium (DSS) to drinking water leads to acute colitis that can serve as an experimental animal model for human ulcerative colitis.

Methodology/Principal Findings

Bortezomib treatment was shown to potently inhibit murine DSS-induced colitis. The attenuation of DSS-induced colitis was associated with decreased inflammatory cell infiltration in the colon. Specifically, bortezomib-treated mice showed significantly decreased numbers of CD4+ and CD8+ T cells in the colon and mesenteric lymph nodes. Bortezomib treatment significantly diminished interferon (IFN)-γ expression in the colon and mesenteric lymph nodes. Furthermore, cytoplasmic IFN-γ production by CD4+ and CD8+ T cells in mesenteric lymph nodes was substantially decreased by bortezomib treatment. Notably, bortezomib enhanced T cell apoptosis by inhibiting nuclear factor-κB activation during DSS-induced colitis.

Conclusions/Significance

Bortezomib treatment is likely to induce T cell death, thereby suppressing DSS-induced colitis by reducing IFN-γ production.  相似文献   

20.

Background

Preterm parturition is characterized by innate immune activation and increased proinflammatory cytokine levels. This well established association leads us to hypothesize that preterm delivery is also associated with neonatal T lymphocyte activation and maturation.

Methodology/Principal Findings

Cord blood samples were obtained following term, preterm, and deliveries complicated by clinical chorioamnionitis. Activation marker expression was quantitated by flow cytometric analysis. Infants born following preterm delivery demonstrated enhanced CD4+ T lymphocyte activation, as determined by CD25 (Term 9.72% vs. Preterm 17.67%, p = 0.0001), HLA-DR (Term 0.91% vs. Preterm 1.92%, p = 0.0012), and CD69 expression (Term 0.38% vs. Preterm 1.20%, p = 0.0003). Neonates delivered following clinical chorioamnionitis also demonstrated increased T cell activation. Preterm neonates had an increased frequency of CD45RO+ T cells.

Conclusion/Significance

Preterm parturition is associated with neonatal CD4+ T cell activation, and an increased frequency of CD45RO+ T cells. These findings support the concept that activation of the fetal adaptive immune system in utero is closely associated with preterm labor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号