首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The gene coding for the maltopentaose-(G5)-forming amylase of Pseudomonas sp. KO-8940 was cloned into Escherichia coli and its nucleotides were sequenced. It was expected that a long open reading frame composed of 1,842-bp that encoded 614 amino acid residues for secretory precursor polypeptide including the typical signal sequence with an NH2-terminal was the gene. An extract of Escherichia coli carrying the cloned G5-forming amylase gene had amylolytic activity with which produced only G5 from starch, the same as that of the donor strain enzyme. In the deduced primary structure of this enzyme, the four conserved regions of many alpha-amylases were found, and the COOH-terminal portion of this enzyme showed high homology with other raw starch digesting amylases.  相似文献   

2.
In order to produce a product with a high content of maltotetraose, dual-enzyme systems composed of immobilized maltotetraose-forming amylase (G(4)-forming amylase) and pullulanase were studied. The thermostability of individually immobilized enzymes was examined in continuous operation; studies revealed that the enzyme immobilized on "Chitopearl" was much more stable than that immobilized on Diaion HP-50. The effects of operating conditions on the stability of G(4) forming amylase immobilized on "Chitopearl" were examined to confirm that the apparent half-life data could be arranged using the immobilized enzyme stability factor, f(s). As for the dual immobilized enzyme system, six methods of usage were considered, with five yielding a 7-10% (w/w) higher content of maltotetraose product than the single-enzyme system. The effects of operating conditions on the maltotetraose production reaction were examined to confirm that the maltotetraose content of the products could be analyzed using the specific space velocity,SSV. In dual immobilized enzyme systems, pullulanase immobilized on the same carrier as the G(4)-forming amylase was found to be more stable than pullulanase immobilized on separate carriers. The effectiveness of using immobilized pullulanase along with the G(4)-forming amylase was confirmed from constant-conversion operations in which the maltotetraose content in the product was kept at 50% (w/w) in laboratory-scale experimentation.  相似文献   

3.
Psychrotolerant Pseudomonas stutzeri strain 7193 capable of producing an extracellular α-amylase was isolated from deep sea sediments of Prydz Bay, Antarctic. The 59678-Da protein (AmyP) was encoded by 1665-bp gene (amyP). The deduced amino acid sequence was identified with four regions, which are conserved in amylolytic enzymes and form a catalytic domain, and was predicted to be maltotetraose forming extracellular amylase by using the I-TASSER online server. Purification of AmyP amylases from both the recombinant of Escherichia coli Top 10 F′ and strain 7193 was conducted. Biochemical characterization revealed that the optimal amylase activity was observed at pH 9.0 and temperature 40°C. The enzymes were unstable at temperatures above 30°C, and only retain half of their highest activity after incubation at 60°C for 5 min. Thin-layer chromatography analysis of the products of the amylolytic reaction showed the presence of maltotetraose, maltotriose, maltose and glucose in the starch hydrolysate.  相似文献   

4.
A continuous production process of maltotetraose was investigated by using immobilized maltotetraose (G(4))- forming amylase (1,4-alpha-D-glucan maltotetraohydrolase, EC3.2.1.60) from Pseudomonas stutzeri adsorbed on a macroporous hydrophobic resin. The maximum reaction rate was obtained at 55 degrees C and the activation energy of hydrolysis by immobilized G(4)-forming amylase was calculated to be 8.45 kcal/mol. The maltotetraose yield was greatly influenced by the flow rate of substrate solution, its concentration, and the immobilized enzyme activity. The newly defined factor "specific space velocity" was successfully introduced to normalize the operating parameters. Using this factor, the immobilized enzyme reactor then can be simulated and the operating dynamics can be determined.  相似文献   

5.
6.
Summary The production of amylolytic enzymes by a thermophilic cellulolytic fungus,Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45° C. Among various nitrogenous compounds used, NaNO3 and KNO3 were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50° C–60° C) and displayed activity optima at 60° C and pH 5.6.  相似文献   

7.
It has been estimated that less than 1% of the microorganisms in nature can be cultivated by conventional techniques. Thus, the classical approach of isolating enzymes from pure cultures allows the analysis of only a subset of the total naturally occurring microbiota in environmental samples enriched in microorganisms. To isolate useful microbial enzymes from uncultured soil microorganisms, a metagenome was isolated from soil samples, and a metagenomic library was constructed by using the pUC19 vector. The library was screened for amylase activity, and one clone from among approximately 30,000 recombinant Escherichia coli clones showed amylase activity. Sequencing of the clone revealed a novel amylolytic enzyme expressed from a novel gene. The putative amylase gene (amyM) was overexpressed and purified for characterization. Optimal conditions for the enzyme activity of the AmyM protein were 42 degrees C and pH 9.0; Ca2+ stabilized the activity. The amylase hydrolyzed soluble starch and cyclodextrins to produce high levels of maltose and hydrolyzed pullulan to panose. The enzyme showed a high transglycosylation activity, making alpha-(1, 4) linkages exclusively. The hydrolysis and transglycosylation properties of AmyM suggest that it has novel characteristics and can be regarded as an intermediate type of maltogenic amylase, alpha-amylase, and 4-alpha-glucanotransferase.  相似文献   

8.
The gene (amyP) coding for maltotetraose-forming amylase (exo-maltotetraohydrolase) of Pseudomonas stutzeri MO-19 was cloned. Its nucleotide sequence contained an open reading frame coding for a precursor (547 amino acid residues) of secreted amylase. The precursor had a signal peptide of 21 amino acid residues at its amino terminus. An extract of Escherichia coli carrying the cloned amyP had amylolytic activity with the same mode of action as the extracellular exo-maltotetraohydrolase obtained from P. stutzeri MO-19. A region in the primary structure of this amylase showed homology with those of other amylases of both procaryotic and eucaryotic origins. The minimum 5' noncoding region necessary for the expression of amyP in E. coli was determined, and the sequence of this region was compared with those of Pseudomonas promoters.  相似文献   

9.
We have identified cDNA clones encoding branching enzyme-I (BE-I) from a maize kernel cDNA library. The combined nucleotide sequence of the cDNAs indicates that maize BE-I is initially synthesized as a precursor protein with a putative 64-residue transit peptide at the amino terminus, and that the mature enzyme contains 759 amino acid residues with a calculated molecular mass of 86,236 Da. The four regions, which constitute the catalytic site of amylolytic enzymes, are conserved in the sequences of BE-I and bacterial branching enzymes. This result demonstrates that branching enzyme belongs to a family of the amylolytic enzymes. The BE-I gene is highly expressed in the early stages of kernel development, and the level of the message concentration decreases slowly as kernel maturation proceeds.  相似文献   

10.
Subcellular localization of the starch-degrading enzymes in Vicia faba leaves was achieved by an electrophoretic transfer method through a starch-containing gel (SCG) and enzyme activity measurements. Total amylolytic and phosphorolytic activities were found predominantly in the extrachloroplastic fraction, whereas the debranching enzymes showed homogenous distribution between stromal and extrachloroplastic fractions. Staining of end products in the SCG revealed two isoforms of [alpha]-amylase (EC 3.2.1.1) and very low [beta]-amylase activity (EC 3.2.1.2) in the chloroplast preparation, whereas [alpha]- and [beta]-amylase exhibited higher activities in the crude extract. However, it is unclear whether the low [alpha]- and [beta]-amylase activities associated with the chloroplast are contamination or activities that are integrally associated with the chloroplast. Study of the diurnal fluctuation of the starch content and of the amylase activities under a 9-h/15-h photoperiod showed a 2-fold increase of the total amylolytic activity in the chloroplasts concurrent with the starch degradation in the dark. No fluctuation was detectable for the extrachloroplastic enzymes. The possible roles and function of the chloroplastic and extrachloroplastic hydrolytic enzymes are discussed.  相似文献   

11.
The stability of immobilized maltotetraose (G(4))-forming amylase (1,4-alpha-D-glucan maltoteraohydrolase, EC 3.2.1.60) from Pseudomonas stutzeri was investigated in both batch and continous processes. The inactivation process of the immobilized enzyme seemed to obey first-order kinetics, and the immobilized enzyme became more stable when coexisting with 20-30 wt % substrate and calcium ions. From intensive studies on the operational stability in the continuous process, the apparent half-life of G(4) productivity in a constant-flow system was mainly affected by the reaction temperature, substrate concentration, and initial immobilized enzyme activity. A new factor, immobilized enzyme stability factor f(s), was proposed to evaluate the half-life of the immobilized enzyme system.  相似文献   

12.
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin''s peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.  相似文献   

13.
The hypothesis that the promotive effect of the embryo axis of the germinating bean seed on amylase activity in the cotyledons is mediated by an osmoregulative mechanism was examined. After 2 days of germination the action of the axis on amylolytic activity was already clearly revealed, whereas at the same time it did not have any influence on osmotic pressure in the cotyledons. When the axis was attached to one cotyledon during 4 days of incubation, osmotic pressure in the cotyledon was lower than its value in the cotyledons of the intact seedling, whereas amylolytic activity was similar in both treatments. It was concluded that the tested hypothesis is not valid in the case of the bean seedling. External osmotic agents brought about a decrease in the level of amylase in the cotyledons, but this does not prove that osmotic changes which are brought about by production of internal metabolites are involved in the regulation of amylase synthesis.  相似文献   

14.
对解淀粉乳酸细菌及其产生的淀粉酶和发酵工艺等方面的国内外研究现状进行了综述。解淀粉乳酸细菌具有分泌淀粉酶的能力,可免去原料水解处理工序直接发酵淀粉质原料生产乳酸,可以简化生产工艺,并可节约设备投资,进而降低生产成本。解淀粉乳酸细菌主要分离自传统发酵食品,也可从有机废弃物和厨余垃圾中分离得到。介绍了解淀粉乳酸细菌直接利用淀粉质原料的机理,比较了解淀粉乳酸菌发酵生产L-乳酸的工艺。提出通过诱变育种和基因工程育种等方法获得更加高效的解淀粉乳酸细菌,并结合先进的发酵、分离技术来提高乳酸生产效率。  相似文献   

15.
Cell homogenate of Entamoeba histolytica trophozoites was investigated for amylolytic activity against various biogenic and synthetic substrates. After gel filtration of the cell homogenate on Sephadex G-150, six partly separated amylases (I to VI) differing in their substrate specificities were detected using maltose, amylose, amylopectin, 4-nitrophenyl alpha-glucoside and 4-nitrophenyl alpha-maltotetraoside. All enzymes are able to degrade amylose, amylopectin, glycogen and biogenic malto-oligosaccharides. Since amylase I and II, which accepted maltose as substrate, were found in fresh (cell-free) medium containing calf serum, the possibility cannot be excluded that these enzymes originate from the medium and therefore are not associated with E. histolytica trophozoites. Amylases III to VI, which were not found in fresh medium, were further purified by isoelectric focusing and chromatographic procedures using DEAE, CM ion exchange materials and Con A Sepharose 4B. pH, temperature optima and relative molecular masses were determined.  相似文献   

16.
Nine extremely thermophilic archaea and one novel thermophilic bacterium were screened for their ability to produce amylolytic and pullulytic enzymes. Cultivation of these micro-organisms was performed in the absence of elemental sulphur with starch as the major carbon source. Enzymatic activity was mainly detected in two archaea belonging to the order Thermoproteales,Desulfurococcus mucosus andStaphylothermus marinus, in two archaea belonging to the order Thermococcales,Thermococcus celer andT. litoralis and in two novel archaeal strains, TYS and TY previously isolated from the Guaymas Basin in the Gulf of California. Both amylolytic and pullulytic activities were also detected in a newly isolated thermophilic bacterium belonging to the order Thermotogales and previously described asFervidobacterium pennavorans. Best yields for enzyme production were obtained in 1–1 batch cultures with the strains TYS (13 units U/1 of amylase, 6 U/1 of pullulanase),F. pennavorans (2.5 U/l of amylase, 4.5 U/l of pullulanase) andT. litoralis (3.0 U/l of amylase). Enzymes were in general characterized by temperature optima around 90–100°C, pH optima around 5.5–6.5 and a high degree of thermostability. Due to the remarkable properties of these enzymes, they are of interest for biotechnological applications.  相似文献   

17.
18.
Twelve amylolytic heterofermentative lactic acid bacteria were isolated in Benin from the fermentation processes of maize sour dough, namely ogi and mawè. Discrimination of strains was performed by DNA restriction patterns and compared with carbohydrate fermentation profiles. This allowed two new amylolytic strains, Ogi E1 and Mw2, belonging to the species Lactobacillus fermentum , to be distinguished. Strains Ogi E1 and Mw2 presented different amylolytic activities; amylase from strain Mw2 was more acidophilic and mesophilic than amylase produced by strain Ogi E1.  相似文献   

19.
Amylolytic enzymes of Arabidopsis leaf tissue were partially purified and characterized. Endoamylase, starch phosphorylase, d-enzyme (transglycosylase), and possibly exoamylase were found in the chloroplasts. Endoamylase, fraction A2, found only in the chloroplast, was resolved from the exoamylases by chromatography on a Mono Q column and migrated with an RF of 0.44 on 7% polyacrylamide gel electrophoresis. Exoamylase fraction, A1, has an RF of 0.23 on the polyacrylamide gel. Viscometric analysis showed that A1 has a slope of 0.013, which is same as that of A3, the extrachloroplastic amylase. A1, however, can be distinguished from A3 by having much higher amylolytic activity in succinate buffer than acetate buffer, and having much less reactivity with amylose. A1 probably is also localized in the chloroplast, and contributes to the 30 to 40% higher amylolytic activity of the chloroplast preparation in succinate than acetate buffer at pH 6.0. The high activity of d-enzyme compared to the amylolytic activity in the chloroplast suggests that transglycosylation probably has an important role during starch degradation in Arabidopsis leaf. Extrachloroplastic amylase, A3, has an RF of 0.55 on 7% electrophoretic gel and constitutes 80% of the total leaf amylolytic activity. The results of substrate specificity studies, action pattern and viscometric analyses indicate that the extrachloroplastic amylases are exolytic.  相似文献   

20.
Chlorella saccharophila can utilize the amino acids arginine, glutamate. ornithine and proline as sole sources of nitrogen for growth. By comparison C. autotrophica utilized only arginine and ornithine. Following osmotic shock of Chlorella autotrophica from 50 to 150% artificial seawater rapid synthesis of proline (the main osmoregulatory solute in this alga) occurred in cells grown on arginine or citrulline. However, little proline synthesis occurred in ornithine-grown cells. Distribution of radiolabelled carbon from [14C]-arginine assimilation following osmotic shock of C. autotrophica agrees with the following pathway of arginine utilization: arginine→citrulline→ornithine→glutamate semialdehyde→pyrroline-5-carboxylate→proline. These 4 steps are catalysed by arginine deiminase (EC 3.5.3.6), citrullinase (EC 3.5.1.20), ornithine transaminase (EC 2.6.1.13) and pyrroline-5-carboxylate reductase (EC 1.5.1.2), respectively. Of these 4 enzymes, only arginine deiminase and pyrroline-5-carboxylate reductase were detected in the crude extract of the 2 Chlorella species. Arginine deiminase did not require specific cations for optimal activity. The deimi-nase showed maximal activity at pH 8.0 and followed Michaelis-Menten kinetics with an apparent Km for L-arginine of 0.085 m M for the C. autotrophica enzyme and 0.097 m M for that of C. saccharophila. The activity of arginine deiminase was not influen-ced by growing C. saccharophila on arginine. Ornithine competitively inhibited arginine deiminase with an apparent K, of 2.4 m M for the C. autotrophica enzyme, and 3.8 m M for that of C. saccharophila . Arginine utilization by Chlorella is discussed in relation to that of other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号