首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral metabolic response to submaximal exercise.   总被引:6,自引:0,他引:6  
We studied cerebral oxygenation and metabolism during submaximal cycling in 12 subjects. At two work rates, middle cerebral artery blood velocity increased from 62 +/- 3 to 63 +/- 3 and 70 +/- 5 cm/s as did cerebral oxygenation determined by near-infrared spectroscopy. Oxyhemoglobin increased by 10 +/- 3 and 25 +/- 3 micromol/l (P < 0. 01), and there was no significant change in brain norepinephrine spillover. The arterial-to-internal-jugular-venous (a-v) difference for O(2) decreased at low-intensity exercise (from 3.1 +/- 0.1 to 2. 9 +/- 0.1 mmol/l; P < 0.05) and recovered at moderate exercise (to 3. 3 +/- 0.1 mmol/l). The profile for glucose was similar: its a-v difference tended to decrease at low-intensity exercise (from 0.55 +/- 0.05 to 0.50 +/- 0.02 mmol/l) and increased during moderate exercise (to 0.64 +/- 0.04 mmol/l; P < 0.05). Thus the molar ratio (a-v difference, O(2) to glucose) did not change significantly. However, when the a-v difference for lactate (0.02 +/- 0.03 to 0.18 +/- 0.04 mmol/l) was taken into account, the O(2)-to-carbohydrate ratio decreased (from 6.1 +/- 0.4 to 4.7 +/- 0.3; P < 0.05). The enhanced cerebral oxygenation suggests that, during exercise, cerebral blood flow increases in excess of the O(2) demand. Yet it seems that during exercise not all carbohydrate taken up by the brain is oxidized, as brain lactate metabolism appears to lower the balance of O(2)-to-carbohydrate uptake.  相似文献   

2.
D W Busija 《Prostaglandins》1985,30(2):229-239
The role of prostanoids in regulation of the renal circulation during hypercapnia was examined in unanesthetized rabbits. Renal blood flow (RBF) was determined with 15 micron radioactive microspheres during normocapnia (PaCO2 congruent to 30 mmHg) and hypercapnia (PaCO2 congruent to 60 mmHg), before and after intravenous administration of indomethacin (10 mg/kg) or vehicle (n = 6 for each group). Arterial blood pressure was not different among the 4 conditions in each group. RBF was 438 +/- 61 and 326 +/- 69 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before indomethacin, and following administration of indomethacin, RBF was 426 +/- 59 ml/min per 100 g during normocapnia and 295 +/- 60 ml/min per 100 g during hypercapnia (P less than 0.05). In the vehicle group, RBF was 409 +/- 74 and 226 +/- 45 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before vehicle; and following administration of vehicle, RBF was 371 +/- 46 ml/min per 100 g during normocapnia and 219 +/- 50 (P less than 0.05) ml/min per 100 g during hypercapnia. RBF during normocapnia was not affected by administration of indomethacin or vehicle. The successive responses to hypercapnia were not different within the indomethacin and vehicle groups, and the second responses to hypercapnia were not different between the two groups. These findings suggest that prostanoids do not contribute significantly to regulation of the renal circulation during normocapnia and hypercapnia in unanesthetized rabbits.  相似文献   

3.
Previous retrospective studies report a core body temperature cooling rate of 3 degrees C/h during avalanche burial. Hypercapnia occurs during avalanche burial secondary to rebreathing expired air, and the effect of hypercapnia on hypothermia during avalanche burial is unknown. The objective of this study was to determine the core temperature cooling rate during snow burial under normocapnic and hypercapnic conditions. We measured rectal core body temperature (T(re)) in 12 subjects buried in compacted snow dressed in a lightweight clothing insulation system during two different study burials. In one burial, subjects breathed with a device (AvaLung 2, Black Diamond Equipment) that resulted in hypercapnia over 30-60 min. In a control burial, subjects were buried under identical conditions with a modified breathing device that maintained normocapnia. Mean snow temperature was -2.5 +/- 2.0 degrees C. Burial time was 49 +/- 14 min in the hypercapnic study and 60 min in the normocapnic study (P = 0.02). Rate of decrease in T(re) was greater with hypercapnia (1.2 degrees C/h by multiple regression analysis, 95% confidence limits of 1.1-1.3 degrees C/h) than with normocapnia (0.7 degrees C/h, 95% confidence limit of 0.6-0.8 degrees C/h). In the hypercapnic study, the fraction of inspired carbon dioxide increased from 1.4 +/- 1.0 to 7.0 +/- 1.4%, minute ventilation increased from 15 +/- 7 to 40 +/- 12 l/min, and oxygen saturation decreased from 97 +/- 1 to 90 +/- 6% (P < 0.01). During the normocapnic study, these parameters remained unchanged. In this study, T(re) cooling rate during snow burial was less than previously reported and was increased by hypercapnia. This may have important implications for prehospital treatment of avalanche burial victims.  相似文献   

4.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

5.
Individual effects of hypoxic hypoxia and hypercapnia on the cerebral circulation are well described, but data on their combined effects are conflicting. We measured the effect of hypoxic hypoxia on cerebral blood flow (CBF) and cerebral O2 consumption during normocapnia (arterial PCO2 = 33 +/- 2 Torr) and during hypercapnia (60 +/- 2 Torr) in seven pentobarbital-anesthetized lambs. Analysis of variance showed that neither the magnitude of the hypoxic CBF response nor cerebral O2 consumption was significantly related to the level of arterial PCO2. To determine whether hypoxic cerebral vasodilation during hypercapnia was restricted by reflex sympathetic stimulation we studied an additional six hypercapnic anesthetized lambs before and after bilateral removal of the superior cervical ganglion. Sympathectomy had no effect on base-line CBF during hypercapnia or on the CBF response to hypoxic hypoxia. We conclude that the effects of hypoxic hypoxia on CBF and cerebral O2 consumption are not significantly altered by moderate hypercapnia in the anesthetized lamb. Furthermore, we found no evidence that hypercapnia results in a reflex increase in sympathetic tone that interferes with the ability of cerebral vessels to dilate during hypoxic hypoxia.  相似文献   

6.
Sympathetic nerve activity influences cerebral blood flow, but it is unknown whether augmented sympathetic nerve activity resets cerebral vasoreactivity to hypercapnia. This study tested the hypothesis that cerebral vasodilation during hypercapnia is restrained by lower-body negative pressure (LBNP)-stimulated sympathoexcitation. Cerebral hemodynamic responses were assessed in nine healthy volunteers [age 25 yr (SD 3)] during rebreathing-induced increases in partial pressure of end-tidal CO(2) (Pet(CO(2))) at rest and during LBNP. Cerebral hemodynamic responses were determined by changes in flow velocity of middle cerebral artery (MCAV) using transcranial Doppler sonography and in regional cerebral tissue oxygenation (ScO(2)) using near-infrared spectroscopy. Pet(CO(2)) values during rebreathing were similarly increased from 41.9 to 56.5 mmHg at rest and from 40.7 to 56.0 mmHg during LBNP of -15 Torr. However, the rates of increases in MCAV and in ScO(2) per unit increase in Pet(CO(2)) (i.e., the slopes of MCAV/Pet(CO(2)) and ScO(2)/Pet(CO(2))) were significantly (P ≤0.05) decreased from 2.62 ± 0.16 cm·s(-1)·mmHg(-1) and 0.89 ± 0.10%/mmHg at rest to 1.68 ± 0.18 cm·s(-1)·mmHg(-1) and 0.63 ± 0.07%/mmHg during LBNP. In conclusion, the sensitivity of cerebral vasoreactivity to hypercapnia, in terms of the rate of increases in MCAV and in ScO(2), is diminished by LBNP-stimulated sympathoexcitation.  相似文献   

7.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   

8.
Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L/P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1.0) with a corresponding MCA Vmean of 46.7 +/- 4.5 cm/s. During rhythmic handgrip the increase in MCA Vmean to 51.2 +/- 4.6 cm/s was related to the increased L/P ratio (23.8 +/- 2.5; r2 = 0.79; P < 0.01). Hyperglycemia increased arterial lactate and pyruvate to 1.9 +/- 0.2 mmol/l and 115 +/- 4 micromol/l, respectively, but it did not significantly influence the L/P ratio or MCA Vmean at rest or during exercise. Conversely, MCA Vmean did not correlate significantly, neither to the arterial lactate nor to the pyruvate concentrations. These results support that the arterial plasma L/P ratio modulates cerebral blood flow during cerebral activation independently from the plasma glucose concentration.  相似文献   

9.
Bright-field and dark-field illumination techniques for in vivo measurements of reduced pyridine nucleotide fluorescence were compared in 15 rats during periods of normocapnia, hypocapnia, hypercapnia, and anoxia. Parameters investigated included fluorescence, cortical reflectance, cortical blood flow, and electroencephalograms. In normal brain, with preserved autoregulation, reduced pyridine nucleotide fluorescence was constant through a wide range in Pa(CO2), cortical blood flow, and cerebral blood volume in animals studied using vertical illumination (bright-field) techniques. There was a marked increase in reduced pyridine nucleotide fluorescence at death from anoxia. Artifacts were reduced by monochromators for excitation, emission, and reflected light; low-intensity vertical excitation energy and high-sensitivity recording instrumentation; and a small avascular (123 μm) field. Potential sources of error include photodecomposition, hemoglobin interference from absorption and reflectance, and light scattering. Vertical excitation techniques using a small field appeared to give more reliable and reproducible results than circumferential techniques using a larger field of observation.  相似文献   

10.
The effect of ajmaline on action potential (AP) and ionic current components has been investigated in right ventricular myocytes of rat at room temperature using the whole cell patch clamp technique. Ajmaline decreased the upstroke velocity ((dV/dt)max) of AP and the AP amplitude, increased the AP duration measured at 50 and 90% repolarization, and reversibly inhibited most components of membrane ionic current in a concentration-dependent manner. The following values of IC50 and of the Hill coefficient (nH) resulted from approximation of the measured data by the Hill formula: for fast sodium current (INa) IC50=27.8+/-1.14 micromol/l and nH=1.27+/-0.25 at holding potential -75 mV, IC50=47.2+/-1.16 micromol/l and nH=1.16+/-0.21 at holding potential -120 mV; for L-type calcium current (ICa-L) IC50=70.8+/-0.09 micromol/l and n(H)=0.99+/-0.09; for transient outward potassium current (Ito) IC50=25.9+/-2.91 micromol/l and nH=1.07+/-0.15; for ATP-sensitive potassium current (IK(ATP)) IC50=13.3+/-1.1 micromol/l and nH=1.16+/-0.15. The current measured at the end of 300 ms depolarizing impulse was composed of an ajmaline-insensitive component and a component inhibited with IC50=61.0+/-1.1 micromol/l and nH=0.91+/-0.08. At hyperpolarizing voltages, ajmaline at high concentration of 300 micromol/l reduced the inward moiety of time-independent potassium current (IK1) by 36%. The results indicate that the inhibition of INa causes both the decreased rate of rise of depolarizing phase and the lowered amplitude of AP. The inhibition of Ito is responsible for the ajmaline-induced AP prolongation.  相似文献   

11.
The mass specific rates of oxygen consumption (M (O(2)) M(b)(-1)), ammonia excretion (M (NH(4)-N) M(b)(-1)) and carbon dioxide production (M (CO(2)) M(b)(-1)) were measured after 7, 14 and 21 days exposure of adult Potamonautes warreni to a sublethal concentration of 1.0 mg Cu l(-1) (15.75 micromol l(-1)). Under control (non-copper-exposed) conditions M (O(2)) M(b)(-1) was 35.7+/-8.5 micromol kg(-1)min(-1) (mean+/-S.D.), M (NH(4)-N) M(b)(-1) 2.92+/-0.26 micromol kg(-1)min(-1) and M (CO(2)) M(b)(-1) 25.6+/-9.0 micromol kg(-1)min(-1). The oxygen:nitrogen (O:N) ratio and respiratory quotient (RQ) were 24.5+/-3.0 and 0.80+/-0.06, respectively. M (O(2)) M(b)(-1) of copper-exposed crabs showed a significant increase after 7 and 14 days, but decreased significantly by 40% after 21 days. From the increased O:N ratio and RQ below 0.7, it is clear that crabs exposed to 1 mg Cul(-1) metabolize lipids during the entire 21-day exposure period. Free fatty acids in the midgut gland were determined by GC-MS, and showed increases of up to 600% in some C14 to C18 fatty acids. It is proposed that the excess lipids inhibit the pyruvate dehydrogenase complex, leading to the acceleration of the gluco- and glyco-neogenic pathways. Increased glyconeogenesis results in elevated glycogen concentrations in all tissues after 21 days. Experiments on acutely exposed P. warreni show increased incorporation of 14C-labelled lactate into glycogen.  相似文献   

12.
The purpose of this investigation was to determine whether plasma glucose kinetics and substrate oxidation during exercise are dependent on the phase of the menstrual cycle. Once during the follicular (F) and luteal (L) phases, moderately trained subjects [peak O(2) uptake (V(O(2))) = 48.2 +/- 1.1 ml. min(-1). kg(-1); n = 6] cycled for 25 min at approximately 70% of the V(O(2)) at their respective lactate threshold (70%LT), followed immediately by 25 min at 90%LT. Rates of plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose, and total carbohydrate (CHO) and fat oxidation were determined with indirect calorimetry. At rest and during exercise at 70%LT, there were no differences in glucose R(a) or R(d) between phases. CHO and fat oxidation were not different between phases at 70%LT. At 90%LT, glucose R(a) (28.8 +/- 4.8 vs. 33.7 +/- 4.5 micromol. min(-1). kg(-1); P < 0.05) and R(d) (28.4 +/- 4.8 vs. 34.0 +/- 4.1 micromol. min(-1). kg(-1); P < 0.05) were lower during the L phase. In addition, at 90%LT, CHO oxidation was lower during the L compared with the F phase (82.0 +/- 12.3 vs. 93.8 +/- 9.7 micromol. min(-1) .kg(-1); P < 0.05). Conversely, total fat oxidation was greater during the L phase at 90%LT (7.46 +/- 1.01 vs. 6.05 +/- 0.89 micromol. min(-1). kg(-1); P < 0.05). Plasma lactate concentration was also lower during the L phase at 90%LT concentrations (2.48 +/- 0.41 vs. 3.08 +/- 0.39 mmol/l; P < 0.05). The lower CHO utilization during the L phase was associated with an elevated resting estradiol (P < 0.05). These results indicate that plasma glucose kinetics and CHO oxidation during moderate-intensity exercise are lower during the L compared with the F phase in women. These differences may have been due to differences in circulating estradiol.  相似文献   

13.
An imbalance in the antioxidative system was connected with the development of a number of pathological processes. In order to receive values of a healthy group and to evaluate pathological changes of the trace element dependent antioxidative status in future, we investigated 99 healthy volunteers (45 male and 54 female, mean age 37.4 +/- 11.7 years). We determined the concentrations of Se, Cu and Zn, the concentrations of malondialdehyde (MDA) and the activities of the Se dependent glutathione peroxidase (GSH-Px) and the Zn/Cu dependent superoxide dismutase (SOD). The plasma concentrations (mean +/- SD) for Se, Cu and Zn were 0.84 +/- 0.10 micromol/l, 15.6 +/- 2.78 micromol/l and 12.6 +/- 1.80 micromol/l, resp., and for non protein-bound and protein bound MDA 0.27 +/- 0.07 micromol/l and 1.11 +/- 0.25 micromol/l, resp. The activity of GSH-Px in plasma and erythrocytes was 130 +/- 20.8 U/l and 19.8 +/- 4.18 U/mg Hb, resp. and of SOD in erythrocytes 3,159 +/- 847.2 U/g Hb. In plasma positive correlations have been found between Se concentrations and GSH-Px activities (p < 0.002, r = 0.31) and between GSH-Px activities and concentrations of non protein-bound MDA (p = 0.004, r = 0.28). A negative correlation has been observed between GSH-Px activities in plasma and in erythrocytes. The higher the concentrations of Cu in erythrocytes, the higher were the activities of SOD (p = 0.03, r = 0.22) and GSH-Px in erythrocytes (r = 0.26, p = 0.01), while an increasing activity of GSH-Px in these cells correlated with a decreasing concentration of non protein-bound MDA (r = -0,31, p = 0.002). An increase in BMI was connected with an increase in protein-bound MDA and a decrease in GSH-Px activities in pLasma (p = 0.002 and r = 0.23). As the results demonstrate, Se and Cu concentrations in erythrocytes can improve the trace element dependent antioxidative status.  相似文献   

14.
To investigate whether or not the mode of delivery produces differences in cerebral oxygenation, cerebral hemoglobin oxygen saturation was measured using full-spectrum near infrared spectroscopy in 26 healthy term newborn infants immediately after birth. Infants in group 1 (n=20) were delivered vaginally, and those in group 2 (n=6) by elective cesarean section. Arterial oxygen saturation in the right hand was also measured simultaneously using a pulse oximeter. Changes in arterial oxygen saturation showed no significant difference between the two groups. The mean+/-S.D. of cerebral hemoglobin oxygen saturation in group 1 increased rapidly after birth, from 29+/-17% at 2 min to 68+/-6% at 8.5 min, followed by an almost constant value (66+/-7% at 15 min). In comparison, cerebral hemoglobin oxygen saturation in group 2 also increased rapidly until 8.5 min, but after this time decreased significantly to 57+/-5% at 15 min after birth. This indicates that the mode of delivery has a marked influence on cerebral oxygenation immediately after birth.  相似文献   

15.
C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.  相似文献   

16.
Tetrahydrobiopterin (BH(4)) is oxidized by O(2) readily in aqueous solutions and physiological concentrations of ascorbate have been shown to inhibit this reaction. In order to gain insight into the mechanism of ascorbate effect, a spectrophotometric analysis was applied for the study of the time course of BH(4) oxidation in the presence of various concentrations of ascorbate and the effect of various temperatures on the apparent second-order rate constant of BH(4) oxidation (k(ox)) in the presence or absence of catalase. In 100 micromol/l concentration, ascorbate alone prolonged the half-life time of 36 micromol/l BH(4) 1.4-fold whereas in the presence of catalase 1.85-fold. In the presence of catalase ascorbate decreased the value of k(ox) to 51 +/- 0.67%, whereas in the absence of it only to 64 +/- 0.77% of control (P < 0.01). The extent of ascorbate effect was not dependent on temperature, at least between 22 and 37 degrees C, either in the presence or absence of catalase. In the absence of catalase the apparent Arrhenius activation energies: 57.02 +/- 0.09 kJ/mol (-ascorbate) and 56.77 +/- 2.21 kJ/mol (+ascorbate) whereas in the presence of catalase: 62.72 +/- 1.37 kJ/mol (-ascorbate) and 59.93 +/- 2.84 kJ/mol (+ascorbate, mean +/- S.E.M., n=3) were obtained. The study shows that catalase potentiates the BH(4)-stabilizing effect of ascorbate. It is concluded that removal of H(2)O(2) generated from BH(4) during oxidation by O(2) prevents a decrease of ascorbate concentration, and in the presence of ascorbate the pacemaker step in the overall reaction is the oxidation of BH(4) and not the reduction of the quinonoid BH(2) back to BH(4) by ascorbate.  相似文献   

17.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

18.
The relationships between pHi (intracellular pH) and phosphate compounds were evaluated by nuclear magnetic resonance (NMR) in normo-, hypo-, and hypercapnia, obtained by changing fractional inspired concentration of CO2 in dogs anesthetized with 0.75% isoflurane and 66% N2O. Phosphocreatine (PCr) fell by 2.02 mM and Pi (inorganic phosphate) rose by 1.92 mM due to pHi shift from 7.10 to 6.83 during hypercapnia. The stoichiometric coefficient was 1.05 (r2 = 0.78) on log PCr/Cr against pHi, showing minimum change of ADP/ATP and equilibrium of creatine kinase in the pH range of 6.7 to 7.25. [ADP] varied from 21.6 +/- 4.1 microM in control (pHi = 7.10) to 26.8 +/- 6.3 microM in hypercapnia (pHi = 6.83) and 24.0 +/- 6.8 microM in hypocapnia (pHi = 7.17). ATP/ADP X Pi decreased from 66.4 +/- 17.1 mM-1 during normocapnia to 25.8 +/- 6.3 mM-1 in hypercapnia. The ADP values are near the in vitro Km; thus ADP is the main controller. The velocity of oxidative metabolism (V) in relation to its maximum (Vmax) as calculated by a steady-state Michaelis-Menten formulation is approximately 50% in normocapnia. In acidosis (pH 6.7) and alkalosis (pH 7.25), V/Vmax is 10% higher than the normocapnic brain. This increase of V/Vmax is required to maintain cellular homeostasis of energy metabolism in the face of either inhibition at extremes of pH or higher ATPase activity.  相似文献   

19.
The new two-breath CO(2) method was employed to test the hypotheses that small alterations in arterial P(CO(2)) had an impact on the magnitude and dynamic response time of the CO(2) effect on cerebrovascular resistance (CVRi) and the dynamic autoregulatory response to fluctuations in arterial pressure. During a 10-min protocol, eight subjects inspired two breaths from a bag with elevated P(CO(2)), four different times, while end-tidal P(CO(2)) was maintained at three levels: hypocapnia (LoCO(2), 8 mmHg below resting values), normocapnia, and hypercapnia (HiCO(2), 8 mmHg above resting values). Continuous measurements were made of mean blood pressure corrected to the level of the middle cerebral artery (BP(MCA)), P(CO(2)) (estimated from expired CO(2)), and mean flow velocity (MFV, of the middle cerebral artery by Doppler ultrasound), with CVRi = BP(MCA)/MFV. Data were processed by a system identification technique (autoregressive moving average analysis) with gain and dynamic response time of adaptation estimated from the theoretical step responses. Consistent with our hypotheses, the magnitude of the P(CO(2))-CVRi response was reduced from LoCO(2) to HiCO(2) [from -0.04 (SD 0.02) to -0.01 (SD 0.01) (mmHg x cm(-1) x s) x mmHg Pco(2)(-1)] and the time to reach 95% of the step plateau increased from 12.0 +/- 4.9 to 20.5 +/- 10.6 s. Dynamic autoregulation was impaired with elevated P(CO(2)), as indicated by a reduction in gain from LoCO(2) to HiCO(2) [from 0.021 +/- 0.012 to 0.007 +/- 0.004 (mmHg x cm(-1) x s) x mmHg BP(MCA)(-1)], and time to reach 95% increased from 3.7 +/- 2.8 to 20.0 +/- 9.6 s. The two-breath technique detected dependence of the cerebrovascular CO(2) response on P(CO(2)) and changes in dynamic autoregulation with only small deviations in estimated arterial P(CO(2)).  相似文献   

20.
This study tested the hypothesis that specific hypoxic molecules, including hypoxia-inducible factor-1alpha (HIF-1alpha), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF), are upregulated within the cerebral cortex of acutely anemic rats. Isoflurane-anesthetized rats underwent acute hemodilution by exchanging 50% of their blood volume with pentastarch. Following hemodilution, mean arterial pressure and arterial Pa(O(2)) values did not differ between control and anemic rats while the hemoglobin concentration decreased to 57 +/- 2 g/l. In anemic rats, cerebral cortical HIF-1alpha protein levels were increased, relative to controls (1.7 +/- 0.5-fold, P < 0.05). This increase was associated with an increase in mRNA levels for VEGF, erythropoietin, CXCR4, iNOS, and nNOS (P < 0.05 for all), but not endothelial NOS. Cerebral cortical nNOS and VEGF protein levels were increased in anemic rats, relative to controls (2.0 +/- 0.2- and 1.5 +/- 0.4-fold, respectively, P < 0.05 for both). Immunohistochemistry demonstrated increased HIF-1alpha and VEGF staining in perivascular regions of the anemic cerebral cortex and an increase in the number of nNOS-positive cerebral cortical cells (3.2 +/- 1.0-fold, P < 0.001). The nNOS-positive cells costained with the neuronal marker, Neu-N, but not with the astrocytic marker glial fibrillary acidic protein (GFAP). These nNOS-positive neurons frequently sent axonal projections toward cerebral blood vessels. Conversely, VEGF immunostaining colocalized with both neuronal (NeuN) and astrocytic markers (GFAP). In conclusion, acute normotensive, normoxemic hemodilution increased the levels of HIF-1alpha protein and mRNA for HIF-1-responsive molecules. nNOS and VEGF protein levels were also increased within the cerebral cortex of anemic rats at clinically relevant hemoglobin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号