首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the existence and pharmacological specificity of [3H]ketanserin binding in hypothalamus of juvenile rainbow trout. Hypothalamic membranes were incubated with [3H]ketanserin (selective 5HT2 antagonist) under several experimental conditions; reactions were terminated by filtration and bound radioactivity was counted by liquid scintillation spectroscopy. Tissue dilution experiments revealed that specific [3H]ketanserin binding (B(sp)) was tissue dependent; 1 hypothalamus equivalent per tube (1100 +/- 115 cpm/mg protein) was subsequently used throughout the rest of this study. In association experiments, B(sp) increased progressively with time, achieved equilibrium binding levels (1192 +/- 120 cpm/mg protein) within 80 min, and remained stable for at least 60 min thereafter; k(obs), and k(+1) were 0.032 and 0.048 min(-1) x nM(-1), respectively. In dissociation experiments, B(sp) completely dissociated within 20 min following addition of excess ketanserin; k(-1) and t1/2 were 0.0803 min(-1) and 8.7 min, respectively. B(sp) was saturable (2500 +/- 256 cpm/mg protein); Scatchard-calculated values for the equilibrium dissociation constant (K(D)) and capacity (Bmax) were 0.48 nM, and 125 fmol/mg protein, respectively. B(sp) was differentially displaced by structurally related competitors, with a rank order of potency of ketanserin = mianserin > ritanserin > serotonin (5HT) = spiperone > methiothepin mesylate > metergoline = DOI ((+/-)-2-5-dimethoxy-4-iodoamphetamine hyrobromide) > 2-methyl-5HT > alpha-methyl-5HT > 5HIAA (5-hydroxyindole acetic acid) = reserpine. These findings provide pharmacological evidence for the presence of a 5HT2-like receptor subtype in the trout hypothalamus.  相似文献   

2.
In order to assess the rat prostate as a target tissue for receptor-mediated estrogen action, we have studied the properties and distributions of estrogen binding sites in the dorsolateral (DLP) and ventral (VP) prostate. Saturation analyses over a wide range of [3H]estradiol ([3H]E2) concentrations (0.5-100 nM) revealed two distinct types of binding sites in the cytosol and nuclear fractions of DLP of intact rats. The high affinity (type I) estrogen binding sites saturated at 2-4 nM of [3H]E2 and had a capacity of 170 fmol/mg DNA in the cytosol and 400 fmol/mg DNA in the nuclei. DLP type I sites had ligand specificity similar to that described for the classical estrogen receptors (ERs) found in female target tissues. The moderate affinity (type II) estrogen binding sites saturated at 15-30 nM of [3H]E2 and had a capacity of 850 fmol/mg DNA in the cytosol and 1600 fmol/mg DNA in the nuclei. DLP type II sites shared some characteristics of the type II ERs described for the rat uterus; they were estrogen specific, heat labile, and sensitive to reducing agents such as dithiothreitol. Saturation analyses on VP cytosols and nuclear fractions revealed only high affinity sites but no moderate affinity sites in the tissue preparations. Our finding that prostatic type II estrogen binding sites are present exclusively in the DLP supports the concept that basic biological differences exist between the two major prostatic lobes of the rat. Furthermore, our findings may help elucidate the observed differences in susceptibility between these two lobes to the hormonal induction of proliferative prostatic lesions.  相似文献   

3.
Properties of nuclear and cytosolic estrogen receptors (ERs) were examined in a new transplantable rat pituitary tumor designated as MtT/F84, of which growth is stimulated by estrogen. The optimal incubation conditions of both nuclear and cytosolic exchange were found to be at 37 degrees C for 15 min and at 25 degrees C for 2 hr, respectively. Molybdate increased a specific binding of estradiol (E2) as determined by [3H]E2-binding assay. Sucrose density gradient analyses of crude cytosol revealed specific peaks of radioactivity in both 4-5S and 8-10S areas. However, only a single 5S peak was present in 0.4M KCl-extractable nuclear ER. Molybdate also enhanced the stability of cytosolic 8-10S receptor in density gradient sedimentation behavior. Scatchard plot analysis for nuclear ER yielded a single class of binding sites with a dissociation constant (Kd) of 0.317 nM and the maximum number of binding sites (NBSmax) of 25.4 fmol/mg protein. Saturation analysis of [3H]estrogen binding to cytosolic ER also yielded a straight line with a Kd of 0.146 nM and NBSmax of 58.5 fmol/mg protein. The effect of E2 administration on the intracellular distribution of ER was also examined. A marked disappearance in the ER binding in cytosol with a concomitant increase in binding in nuclear fraction was found after the administration of the unlabeled E2 in vivo, whereas the total number of ER did not change. Thus, it is concluded that properties of ER in the MtT/F84 were very similar to those in other target organs such as uterus and pituitary gland.  相似文献   

4.
The specific binding protein for substance P (SP) was solubilized in an active form from the crude mitochondrial (P2) fraction of bovine brainstem. After incubation with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and 0.1 M NaCl at 0 degrees C for 30 min, the SP binding to the supernatant fraction (100,000 g, 60 min) was determined by the glass fiber filtration method reported by Bruns et al. (1983). The specific [3H]SP binding to the solubilized fraction was highly specific for SP and was displaced by nanomolar concentrations of SP and physalaemin, but only by micromolar concentrations of eledoisin. In addition, the binding was inhibited by GTP (approximately 40% of the specific binding decreased by 10 microM GTP) in both preparations. These results were virtually identical to those of P2 membrane preparations and suggested that this high-affinity SP binding site belongs to the SP-P type. Scatchard analyses of SP binding to the solubilized fraction revealed a single saturable component with a Bmax of 22.0 +/- 5.10 fmol/mg protein and a KD of 0.79 nM, and these values are almost the same as those obtained in the P2 fraction (Bmax = 31.3 +/- 3.56 fmol/mg protein, KD = 0.82 nM). Gel filtration analysis showed that the detergent-SP binding protein complex has two calculated molecular weights of greater than 1,000,000 and 55,000-60,000 (a corresponding Stokes radius of 35.5 nm).  相似文献   

5.
A single type of high-affinity binding sites for IL-1 beta was identified in the rat hypothalamus (Kd = 1.0 +/- 0.2 nM) and cerebral cortex (Kd = 1.3 +/- 0.2 nM), but not in the pituitary. The maximum binding capacity (Bmax) in the hypothalamus (Bmax = 75.4 +/- 10.8 fmol/mg protein) was 4 times greater than in the cerebral cortex (Bmax = 17.2 +/- 1.5 fmol/mg protein). Neither various neuropeptides nor IL-2 appeared to influence the binding of [125I]IL-1 beta to the hypothalamic membrane preparations. The potency of unlabeled IL-1 alpha to replace the binding of [125I]IL-1 beta to the hypothalamic membrane preparations was considerably less than that of unlabeled IL-1 beta. These findings indicate that IL-1 beta receptors are heterogeneously distributed in the central nervous system and that IL-1 alpha does not bind with IL-1 beta receptors in the brain.  相似文献   

6.
We have discovered that endothelin-1 (ET-1) vasoconstriction is significantly enhanced in aortas of young (8-16-week-old) apolipoprotein E-deficient (ApoE-/-) mice devoid of atherosclerotic lesions (maximum response expressed as a percentage of the mean response to 100 mM KCl (E(MAX)) = 55.7% +/- 19.5% KCl, n = 5) compared to age-matched C57BL/6/J control animals (E(MAX) = 12.6% +/- 2.5% KCl, n = 8), indicating that alterations in the endothelin system may contribute to disease progression, at least in this animal model. There was no difference in the potency of ET-1 to contract aorta from the two groups (C57BL/6/J pD2 = 8.74 +/- 0.30; ApoE-/- pD2 = 8.50 +/- 0.15, P > 0.05). This increased response was specific to ET-1, as it was not observed with phenylephrine or U46619, nor was it due to a non-receptor mediated increase in contractile sensitivity, as there was no change in response to KCl between the two groups. [125I]ET-1 bound with subnanomolar affinity (K(D)) to aorta (K(D) = 0.018 +/- 0.002 nM, n = 4) and, with an order of magnitude lower affinity, to heart (K(D) = 0.47 +/- 0.05, n = 5) of C57BL/6/J mice with binding densities (B(MAX)) of 9.3 +/- 2.4 fmol mg(-1)protein and 100 +/- 14 fmol mg(-1) protein, respectively. Alterations in vascular reactivity to ET-1 could not be explained by increased endothelin receptor density or affinity, as these were not altered in aorta (K(D) = 0.011 +/- 0.003 nM; B(MAX) = 10.1 +/- 3.9 fmol mg(-1), n = 4) and heart (K(D) = 0.43 +/- 0.04 nM; B(MAX) = 115 +/- 26 fmol mg(-1), n == 6) of ApoE-/- animals. The ratio of ET(A) to ET(B) receptors in heart of control and ApoE-/- mice was similar, comprising 89% and 85% ET(A) receptors, respectively. In isolated aorta from ApoE-/- mice on the Western diet, which more closely resembled more advanced stages of the disease in man, the augmented ET-1 vasoconstrictor response was maintained (E(MAX) = 25.2% +/- 6.8% KCl, n = 9); however, it was completely prevented in animals that had received 10 weeks of oral atorvastatin (30 mg kg(-1) day(-1)) (E(MAX) = 4.0% +/- 1.5% KCl, n = 5), a concentration that was chosen because it did not affect plasma cholesterol and triglyceride levels. Therefore, this protective prevention of enhanced ET-1 vasoconstriction in ApoE-/- mice by atorvastatin was independent of its lipid-lowering properties.  相似文献   

7.
The presence of estrogen binding components (EBC) in intestinal mucosa of female rats was investigated by competitive-binding assay using radiolabelled and nonlabelled estradiol 17 beta (E2). EBC were found exclusively in the nuclear fraction and were absent from the cytosolic and from the microsomal fractions. Two types of nuclear EBC with different binding characteristics and capacities were found: Kd1 = 4.8 +/- 0.8 nM, n1 = 18.4 +/- 4.2 fmol/mg protein (n1 = 83.4 +/- 12.5 fmol/mg DNA) and Kd2 = 31.1 +/- 6.8 nM, n2 = 91.1 +/- 18.5 fmol/mg protein (412.7 +/- 80.0 fmol/mg DNA). Type 1 component showed slightly greater affinity for estrogens as compared to progesterone and dexamethasone whereas type 2 component bound other competitors with even greater affinity than E2.  相似文献   

8.
Effects of clomiphene citrate (clomiphene) on the pituitary gland of chronically estrogenized ovariectomized rats were investigated. Estradiol-17 beta (E2) pellet implanted subcutaneously in castrated rats for 7 days caused significant increases in pituitary weight and serum prolactin (PRL) level but suppressed serum luteinizing hormone (LH) level. In the estrogenized rats about 40% of estrogen receptor (ER) found in whole pituitary cells (65 +/- 7 fmol/10 mg tissue) was observed in the nucleus, while 60% of ER was present in the cytosol fraction. A single injection of 5 micrograms E2 translocated cytosol ER immediately to nuclear compartment; amounts of ER found in cytosol and nuclear fractions were 16 +/- 1 and 37 +/- 4 fmol/10 mg tissue, respectively, at 1 h. However, the distribution of ER returned to the pre-injection level within 4 h. In the non-estrogenized castrated rats, the nuclear retention of ER was significantly longer than that in the estrogenized rats. A single administration of 200 micrograms clomiphene in the estrogenized rats, on the other hand, increased nuclear ER gradually. Nuclear ER reached the peak level at 4 h (62 +/- 5 fmol/10 mg tissue) and the level remained almost unchanged for 24 h. Cytosol ER decreased and reached a nadir at 4 h (4.3 +/- 0.3 fmol), and the replenishment of cytosol ER could not be detected for 24 h. Similar patterns of cytosol and nuclear ER following the clomiphene injection were also found in the castrated rats. The clomiphene administration in the estrogenized rats resulted in a significant reduction of the pituitary weight 48 h after the administration. The present results seem to show the antiestrogenic action of clomiphene in the pituitary gland.  相似文献   

9.
Androgen receptors (AR) were studied in seminiferous tubule cytosol and testicular nuclear extracts prepared from testes of previously untreated elderly men undergoing orchiectomy as therapy for prostatic carcinoma. Cytosol exhibited high affinity (Kd = 0.8 nM), saturable binding of [3H]methyltrienolone; however, the synthetic progestin, promegestone was a stronger competitor for MT binding sites than were 5 alpha-dihydrotestosterone (DHT) or testosterone (T), suggesting the presence of progesterone-like binding sites. Addition of triamcinolone acetonide (TA) produced the usual relative steroid specificity for AR binding and reduced the measured AR binding capacity by 19 +/- 8% (Mean +/- SD, n = 3). The umber of MT binding sites was 30-40 fmol/mg protein, or an average of 65 fmol/g testis, and the equilibrium dissociation constant at 0 degrees C was 0.6-1.4 nM. In the presence of sodium molybdate, binding was stable for 40 h at 0 degrees C and the half-time of dissociation of the MT-AR complex was 12-16 h. The binding of salt extractable (600 mM KCl) nuclear sites to MT was saturable and was specific for androgens. The number of binding sites in nuclear extracts was 170 fmol/g testis and the apparent equilibrium dissociation constant was 4.2 nM. Thus, the binding of MT to human seminiferous tubule cytosol and testicular nuclear extract exhibits properties which are nearly identical to those of the prostate AR. Further study of this androphilic protein may provide insight into the role of androgen in normal and abnormal spermatogenesis in man.  相似文献   

10.
The in vitro binding of a synthetic androgen, methyltrienolone ([3H]-R1881), to brain and pituitary (PIT) cytosol and nuclear extracts was determined in male and female rats. Purified cytosol was prepared from PIT or hypothalamic-preoptic area-amygdala (HPA) and incubated in the presence of 0.1 to 10 nM [3H]-R1881. Scatchard analysis revealed the presence of a single, saturable, high-affinity binding site in PIT cytosol with a dissociation constant (Kd) of 0.42 X 10(-10) M in females and 0.95 X 10(-10) M in intact males. The Kd of HPA cytosol was much less in castrated males [0.47 +/- 0.05 (SEM) X 10(-10)M, n = 7] and females (0.63 +/- 0.1 X 10(-10) M, n = 4) than in intact males (5.8 +/- 1.1 X 10(-10) M, n = 8). Treatment of castrated males with dihydrotestosterone (DHT) for 24 h (250 micrograms/100 g of body weight) increased the Kd of HPA cytosol only slightly (1.6 X 10(-10) M, mean of two replicates). Scatchard analysis of salt-extracted nuclear androgen receptor (ARn) showed a single, high-affinity binding site with similar Kd values in PIT and HPA of intact and castrated, DHT-treated male rats (PIT Kd = 7.3 X 10(-10) M, 9.3 X 10(-10) M; HPA Kd = 1.5 X 10(-9) M, 1.3 X 10(-9) M, respectively). Competition studies involving a range of several radioinert steroids revealed that the binding of [3H]-R1881 to cytosol (ARc) and nuclear extract was specific for androgen receptor when triamcinolone acetonide (10 microM) was added. The ARc and ARn levels were quantified in PIT, preoptic area (POA), hypothalamus (HT), amygdala, hippocampus, and cortex by single point estimation. Significantly (p less than 0.01) greater amounts of ARc were detected in PIT of ovariectomized females (32.7 +/- 2.9 fmol/mg of protein) than in that of orchidectomized males (22.33 +/- 1.6 fmol/mg of protein). The highest levels in the brain were seen in HT and POA. Pituitary ARc in females varied throughout the estrous cycle. Significantly (p less than 0.01) greater amounts were detected on estrus (45.8 +/- 2.2 fmol/mg of protein) and proestrus (39.0 +/- 1.9 fmol/mg of protein) than on diestrus (29.2 +/- 1.5 fmol/mg of protein). These data confirm the existence of specific receptors for androgen in male and female brain and PIT, and suggest an important role for androgen in the control of PIT hormone secretion in the female.  相似文献   

11.
The glucocorticoid receptor (GR) was partially characterized in mouse renal cytosol. A sensitive and reproducible [3H]dexamethasone binding assay suitable for use with small quantities of cytosolic protein, was developed. Studies defined the optimal equilibrium binding conditions, metabolism of [3H]dexamethasone in adult renal cytosol, specificity of binding of the GR, and molecular weight of the GR-[3H]dexamethasone complex by gel filtration chromatography. The assay was subsequently used to measure the renal GR during different stages of foetal and postnatal development, as well as in glomerular and renal tubular preparations from adult mice. An almost linear increase in GR occurred from day 13 to day 18 of gestation with levels rising from 100 to 201 fmol/mg cytosol protein; this was followed by a sharp rise in receptor concentration just after birth to 343 fmol/mg cytosol protein. Adult levels, 410-433 fmol/mg cytosol protein, were reached by 2 weeks after birth. The equilibrium dissociation constants (Kd) of the [3H]dexamethasone-receptor complex were similar in adult and in embryonic cytosols (range, 2.8-11.8 nM; mean +/- SD = 6.5 +/- 2.9 nM). Specific binding was assessed to be 3- to 5-fold greater in tubular than in glomerular preparations. These data on the localization and ontogeny of GR during murine metanephric development provide a basis for study of glucocorticoid-mediated effects on various models of congenital and acquired renal disease.  相似文献   

12.
Accumulation of Angiotensin II (Ang II) in the kidneys of hypertensive rats infused chronically with Ang II occurs by AT1 receptor mediated internalization of Ang II, which may interact with intracellular targets, including nuclear binding sites. The aims of this study were to determine if kidney cell nuclei have specific Ang II binding sites and if chronic infusion of Ang II (70 ng/min; n=9) influences the nuclear Ang II binding capacity. Kidneys were harvested from control and Ang II infused rats and the renal cortexes were homogenized to obtain crude membrane preparations and nuclear fractions. Ang II binding sites were measured with a single point assay by incubating each fraction with 10 nM 125I-Sar-Ile-Ang II in the absence (total binding sites) or presence of either 2.5 M Sar-Leu-Ang II or 25 microM losartan to detect specific AT or AT1 binding sites. Both fractions exhibited specific Ang II binding sites that were displaced by both saralasin and losartan. In control rats, crude membrane preparations had 792 +/- 218 and the nuclear fraction had 543 +/- 222 fmol/mg protein AT1 receptors. AT1 receptor levels in membrane (885 +/- 170 fmol/mg protein) and nuclear fractions (610 +/- 198 fmol/mg protein) were not significantly different in Ang II infused rats. These data support the presence of nuclear Ang II receptors predominantly of the AT1 subtype in renal cells. Chronic Ang II infusion did not alter overall Ang II receptor densities.  相似文献   

13.
A study was made of 3H-19-nortestosterone binding by isolated nuclei and 0.4 M KCl nuclear extract of the rat skeletal muscle. Binding specificity was ascertained by incubation in the presence of various unlabeled steroids. The Kd values were measured for nuclei and 0.4 M KCl nuclear extract (11.6 +/- 2.5 nM and 9.9 +/- 1.6 nM, respectively). The amount of binding sites was 24.1 +/- 1.7 fmol/mg DNA or 13.7 +/- 1.0 fmol/g tissue. Enzymatic treatment with pronase and DNase shows that nuclear androgen receptors are proteins. DNA was noted to have a stabilizing effect. DNase treatment of nuclei during extraction with 0.4 M KCl was shown to significantly increase the amount of specifically bound radioactivity in the extract.  相似文献   

14.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

15.
The binding and displacement of beta-adrenoceptor blockers, [3H]propranolol ([3H]PRP) and [3H]dihydroalprenolol ([3H]DHA), were studied on isolated rat erythrocytes, their membranes and ghosts; the binding of [3H]DHA and a M-cholinoceptor blocker, [3H]quinuclidinylbenzylate ([3H]QNB), on cerebral cortex membranes. In all experiments, ligand-receptor interactions conformed to a model of two pools of receptors in the same effector system and the binding of two ligand molecules to the receptor. The results were similar for the displacement of [3H]PRP, [3H]DHA and [3H]QNB with propranolol, dihydroalprenolol and quinuclidinyl-benzylate, respectively. The parameters of [3H]PRP to beta-adrenoceptor binding for intact erythrocytes were: Kd1 = 0.74+/-0.07 nM, Kd2 = 14.40+/-0.41 nM, B1 = 24+/-2 unit/cell, B2 = 263+/-5 unit/cell; for ghosts, Kd1 = 0.70+/-0.17 nM, Kd2 = 19.59+/-2.59 nM, B1 = 9+/-1 fmol/mg protein, B2 = 39+/-4 fmol/mg protein. Receptor affinities were similar in erythrocytes and ghosts; on the ghost membrane, the number of receptors was considerably lower (B1 = 2 unit/cell, B2 = 6 unit/cell). The parameters of [3H]QNB to M-cholinoceptor binding of the cerebral cortex membrane were the following: Kd1 = 0.43 nM, Kd2 = 2.83 nM, B1 = 712 fmol/mg, B2 = 677 fmol/mg.  相似文献   

16.
The effects of testosterone on cytosol and nuclear androgen receptors of ram pituitary were examined in two experiments. In Exp. I, 500 micrograms testosterone were injected intravenously and groups of 4 rams were slaughtered at 0, 15, 30, 45, 90 and 360 min after injection. Cytosolic receptor concentration decreased from 21 +/- 0.9 to 6 +/- 0.9 fmol/mg protein 30 min after the testosterone injection (P less than 0.001), and then returned towards the preinjection level after 90 min. The pattern of nuclear receptor concentration was the opposite; a maximal increase (12 +/- 3.5 to 32 +/- 5.7 fmol/mg protein) was observed 30 min after injection (P less than 0.001), followed by a progressive but incomplete decrease by 360 min. In Exp. II, blood was collected every 20 min for 17 h in three successive series, each of 12 rams, which were then slaughtered. Plasma LH and testosterone concentrations were measured by radioimmunoassay. No changes were observed in cytosol receptor concentration, but nuclear receptor concentration was negatively correlated with the interval elapsed since the beginning of the last testosterone pulse (r = -0.62; P less than 0.001). The highest values for nuclear receptor concentrations were observed at an interval equal to or less than 120 min. These results indicate that natural pulses are associated with androgen binding particularly in the pituitary nuclei.  相似文献   

17.
Binding of [125I-Tyr8]bradykinin (BK) was measured in homogenates of epithelial and smooth muscle layers of the guinea pig ileum. Binding assays were performed at 4 degrees C for 40 min (smooth muscle) or 90 min (epithelium) in 25 mM PIPES buffer at pH 6.8 in the presence of 1 mM 1,10-phenanthroline, 140 micrograms/mL bacitracin, 1 mM captopril, 1 mM dithiothreitol, and 0.1% bovine serum albumin. Specific binding of [125I-Tyr8]BK (0.32 nM) to epithelial and smooth muscle cell membranes was linearly related to protein concentration between 0.05 and 0.5 mg/mL. Equilibrium experiments showed that specific binding of [125I-Tyr8]BK was saturable and Scatchard analysis indicated the presence of a high affinity site with a Kd value of 1.6 nM and a Bmax of 156 fmol/mg of protein in the epithelial cell membranes. In smooth muscle membranes, Kd was 1.8 nM and the maximum number of binding sites was 58 fmol/mg of protein. Unlabelled peptides, namely bradykinin, [Tyr8]BK, [Hyp3]BK, D-Arg[Hyp3]BK, [Hyp3,Tyr(Me8)]BK, and kallidin displaced [125I-Tyr8]BK binding while other peptides, angiotensin II and substance P, had no effect. A series of B2-receptor antagonists displaced [125I-Tyr8]BK from specific binding sites with IC50 values ranging from 16 to 152 nM on epithelial cell membranes; similar values were obtained from smooth muscle cell membranes. These findings suggest that the binding sites in both preparations are of the B2 type. B1-receptor agonists and antagonists were found to be inactive at concentrations up to 10(-4) M. Results obtained in the two preparations were compared and a positive highly significant correlation was demonstrated between the two sets of data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The neuropeptide substance P (SP) stimulates human T-lymphocyte function in vitro. Human blood T-lymphocytes and cultured human IM-9 B-lymphoblasts express 7,000-10,000 and 25,000-30,000 substance P receptors per cell, respectively. The specific binding of 125I-SP is retained in IM-9 lymphoblast membranes solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) at a detergent-to-protein ratio of 1.0. In addition, specific and reversible SP binding to soluble IM-9 cell membrane proteins is demonstrated by gel filtration. The saturation of binding of 125I-SP to both intact and solubilized IM-9 cell membranes attained a steady state after 40-50 min at 4 degrees C. Scatchard analysis of the concentration dependence of 125I-SP binding to IM-9 cell membranes revealed a KD of 0.87 +/- 0.8 nM (mean +/- S.D., n = 4), which is similar to that observed in intact cells, and a density of receptors of 21 +/- 3 fmol/mg of membrane protein (mean +/- S.D.). Binding of 125I-SP to solubilized membranes demonstrated a KD of 0.75 +/- 0.33 nM (mean +/- S.D., n = 3) and a density of receptors of 3.7 +/- 1.5 fmol/mg of membrane protein (mean +/- S.D., n = 3). Affinity cross-linking of 125I-SP by disuccinimidyl suberate to intact IM-9 cells and membranes revealed specifically labeled proteins of Mr 58,000 and 33,000 in cells, and 58,000, 33,000, and 16,000 in membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reducing and nonreducing conditions. Competitive effects of substituent peptides of SP on cross-linking and 125I-SP binding to membranes demonstrated that the SP receptor recognized the carboxyl-terminal domain of the peptide. Membranes from cells preincubated in vitro for 12 h at 37 degrees C with 10(-8) M SP demonstrated a decrease in SP receptor density to 13 +/- 2 fmol/mg (mean +/- S.D., n = 2), and a parallel diminution in the specific labeling of membrane proteins of Mr 58,000 and 33,000. These observations suggest that solubilization in CHAPS preserves the binding characteristics of the IM-9 lymphoblast receptor for SP, and that affinity cross-linking techniques identify by sodium dodecyl sulfate-polyacrylamide gel electrophoresis membrane proteins that are specifically labeled by SP.  相似文献   

19.
We present, herein, the evidence for lactoferrin (Lf) binding sites in brain endothelial capillary cells (BCECs) and mouse brain. The results from confocal microscopy showed the presence of Lf receptors on the surface of BCECs and the receptor-mediated endocytosis for Lf to enter the cells. Saturation binding analyses revealed that Lf receptors exhibited two classes of binding sites in BCECs (high affinity: dissociation constant (K (d)) = 6.77 nM, binding site density (B (max)) = 10.3 fmol bound/mug protein; low affinity: K (d) = 4815 nM, B (max) = 1190 fmol bound/mug protein) and membrane preparations of mouse brain (high affinity: K (d) = 10.61 nM, B (max) = 410 fmol bound/mug protein; low affinity: K (d) = 2228 nM, B (max) = 51641 fmol bound/mug protein). The distribution study indicated the effective uptake of (125)I-Lf in brain after intravenous administration. The present study provides experimental evidence for the application of Lf as a novel ligand for brain targeting.  相似文献   

20.
Activated skeletal muscle proteolysis in catabolic states has been linked to an upregulation of the ATP-ubiquitin-dependent proteolytic system. Previous studies suggested that the N-end rule pathway is primarily responsible for the bulk of skeletal muscle proteolysis. The activity of this pathway is dependent on the 14-kDa ubiquitin-conjugating enzyme E2(14k) (HR6B) and the ubiquitin protein ligase Ubr1. To address the requirement of E2(14k) in muscle proteolysis, we examined muscle protein metabolism in wild-type (WT) mice and mice lacking the E2(14k) gene (KO) in fed and fasted (48 h) states. Baseline body weight, muscle mass, and protein content were similar, and these parameters decreased similarly upon fasting in the two genotypes. There were also no effects of genotype on the rate of proteolysis in soleus muscle. The fasting-induced increase in the amount of ubiquitinated proteins was the same in WT and KO mice. The absence of any significant effect of loss of E2(14k) function was not due to a compensatory induction of the closely related isoform HR6A. Total intracellular concentration of E2(14k) and HR6A in the WT mice was 290 +/- 40 nM, but the level in the KO mice (reflecting the level of HR6A) was 110 +/- 9 nM. This value is about threefold the apparent Michaelis-Menten constant (K(m)) of E2(14k) (approximately 40 nM) for stimulating conjugation in muscle extracts. Because the HR6A isoform has a K(m) of 16 nM for stimulating conjugation, the HR6A levels in the muscles of KO mice appear sufficient for supporting conjugation mediated by this pathway during fasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号