首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cystic fibrosis (CF) involves abnormalities in mucus production and secretion of the airway. Studies of the regulation of airway mucin production and secretion has been difficult due to the lack of in vitro models of the airway epithelial cells which express functional differentiation. Because the majority of the mucin in the airway is apparently produced by the submucosal glands, we have focused our attention on the development of cell culture models of human airway submucosal glands. This report describes the propagation of CF airway submucosal gland epithelial cells which continue to express mucin production. The CF bronchus was obtained from a 31-yr-old patient who received a double lung transplant. The glands were dissected out and primary cultures prepared by the explant/outgrowth procedure. The cells were immortalized by infection with Adl2-SV40 hybrid virus. The cultures are maintained in serum-free keratinocyte basal medium supplemented with insulin (5μg/ml), hydrocortisone (0.5μg/ml), epidermal growth factor (10 ng/ml), bovine pituitary extract (25μg/ml), and antibiotics. Cultures were passaged using 0.125% trypsin in Ca+2 and Mg+2-free Hanks’, balanced salt solution. Polymerase chain reaction (PCR) analysis demonstrated that the cells were homozygous for the ΔF508 mutation. Morphologic observations showed that the cells were epithelial and were interconnected by sparsely distributed desmosomes. Their cytoplasm contained secretory-type structures including abundant Golgi, rough endoplasmic reticulum, and secretory vesicles. Immunofluorescent studies determined that all cells were positive for cytokeratins, mucin glycoconjugates, and cystic fibrosis transmembrane conductance regulator. The cultures secreted substantial amounts of mucin glycoproteins and expressed the MUC-2 mucin gene. Patch clamp experiments revealed that the cells expressed defective Cl channels which were not activated by Forskolin.  相似文献   

2.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.  相似文献   

3.
4.
Human tracheal gland serous (HTGS) cells are now believed to be a major target of cystic fibrosis (CF) gene therapy. To evaluate the efficiency of adenovirus-mediated gene transfer in these cells we tested the adenovirus construction containing β-galactosidase cDNA. We observed that the endogenous β-galactosidase activity in cultured CF-HTGS cells was too strong to allow us to detect any exogenous β-galactosidase activity. Immunohistological study on sections of human tracheal tissue confirmed the presence of β-galactosidase in the serous component of the submucosal glands. We then looked for other lysosomal activities in normal and CF-HTGS cells. We showed that normal cells already have elevated enzyme values and that CF-HTGS cells contained 2–4-fold more β-galactosidase, α-fucosidase, α-mannosidase and β-glucuronidase activities than normal cells. An analysis of their kinetic constants has shown that this difference could be attributed to a lower Km of CF lysosomal enzymes. More importantly, these differences are eliminated after adenovirus-mediated CFTR gene transfer and not after β-galactosidase gene transfer.  相似文献   

5.
6.
BACKGROUND: In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. METHODS AND RESULTS: As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. CONCLUSIONS: This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action.  相似文献   

7.
Cystic fibrosis (CF) is a genetic disease characterized by severe neutrophil-dominated airway inflammation. An important cause of inflammation in CF is Pseudomonas aeruginosa infection. We have evaluated the importance of a number of P. aeruginosa components, namely lipopeptides, LPS, and unmethylated CpG DNA, as proinflammatory stimuli in CF by characterizing the expression and functional activity of their cognate receptors, TLR2/6 or TLR2/1, TLR4, and TLR9, respectively, in a human tracheal epithelial line, CFTE29o(-), which is homozygous for the DeltaF508 CF transmembrane conductance regulator mutation. We also characterized TLR expression and function in a non-CF airway epithelial cell line 16HBE14o(-). Using RT-PCR, we demonstrated TLR mRNA expression. TLR cell surface expression was assessed by fluorescence microscopy. Lipopeptides, LPS, and unmethylated CpG DNA induced IL-8 and IL-6 protein production in a time- and dose-dependent manner. The CF and non-CF cell lines were largely similar in their TLR expression and relative TLR responses. ICAM-1 expression was also up-regulated in CFTE29o(-) cells following stimulation with each agonist. CF bronchoalveolar lavage fluid, which contains LPS, bacterial DNA, and neutrophil elastase (a neutrophil-derived protease that can activate TLR4), up-regulated an NF-kappaB-linked reporter gene and increased IL-8 protein production in CFTE29o(-) cells. This effect was abrogated by expression of dominant-negative versions of MyD88 or Mal, key signal transducers for TLRs, thereby implicating them as potential anti-inflammatory agents for CF.  相似文献   

8.
9.
Mast cell chymase. A potent secretagogue for airway gland serous cells   总被引:6,自引:0,他引:6  
Submucosal glands are the major sources of airway secretions in most mammals. Mast cells are abundant in the environment of airway submucosal glands and are rich sources of secreted proteases. To investigate the hypothesis that mast cell proteases stimulate airway gland secretion, we studied the ability of the two major mast cell granule proteases, chymase and tryptase, to cause secretion of 35S-labeled macromolecules from a line of cultured bovine airway gland serous cells. Mast cell chymase and tryptase were purified from dog mastocytoma cells. Chymase markedly stimulated serous cell secretion in a concentration-dependent fashion with a threshold of 10(-10) M, whereas tryptase had no effect. The response to 10(-8) M chymase (1530 +/- 80% over base line) was approximately 10-fold higher than that evoked by other agonists such as histamine and isoproterenol. The predominant 35S-labeled macromolecule released by chymase was chondroitin sulfate proteoglycan, the glycoconjugate present in serous cell secretory granules. The response to chymase was non-cytotoxic and was blocked by active site inhibitors of chymase (soybean trypsin inhibitor and chymostatin) and by inhibitors of cellular energy metabolism (azide,2,4-dinitrophenol, dicumarol). Supernatant obtained by degranulation of mastocytoma cells caused a secretory response of comparable magnitude to that caused by chymase. These findings demonstrate that chymase, but not tryptase, is a potent secretagogue for airway gland serous cells, and they suggest a possible role for chymase-containing mast cells in the pathogenesis of airway hypersecretion.  相似文献   

10.
Cultured airway epithelial cells are widely used in cystic fibrosis (CF) research as in vitro models that mimic the in vivo manifestations of the disease and help to define a specific cellular phenotype. Recently, a number of in vitro studies have used an airway adenocarcinoma cell line, Calu-3 that expresses submucosal gland cell features and significant levels of the wild-type CFTR mRNA and protein. We further characterized previously described CF tracheobronchial gland cell lines, CFSMEo- and 6CFSMEo- and determined that these cell lines are compound heterozygotes for the F508del and Q2X mutations, produce vestigial amounts of CFTR mRNA, and do not express detectable CFTR protein. Electrophysiologically, both cell lines are characteristically CF in that they lack cAMP-induced Cl- currents. In this study the cell lines are evaluated in the context of their role as the CF correlate to the Calu-3 cells. Together these cell systems provide defined culture systems to study the biology and pathology of CF. These airway epithelial cell lines may also be a useful negative protein control for numerous studies involving gene therapy by cDNA complementation or gene targeting.  相似文献   

11.
Retrovirus-mediated gene transfer offers the potential for stable long-term expression of transduced genes in host cells subsequent to integration of vector DNA into the host genome. Using a murine amphotropic retrovirus vector containing an interleukin-2 receptor (IL-2R) gene as a reporter and a neomycin phosphotransferase (neor) gene as a dominant selectable marker, we measured the efficiency of retrovirus-mediated gene transfer and the stability of transduced gene expression in a cystic fibrosis tracheal epithelial cell line (CFT1). The use of the IL-2R cell surface marker as a reporter of infection permitted both quantitation of vector gene expression and flow cytometric sorting of cells transduced with the vector. In initial studies, the optimal conditions for retrovirus-mediated gene transfer were determined. The presence of a polycation was required for optimal transduction efficiency. The efficiency of infection of CFT1 cells was increased by repetitive exposure to virus such that it was possible to transduce approximately 80% of the cells following three successive daily exposures. The long-term stability of expression of the non-selected IL-2R gene was also evaluated. A slow decline in the percentage of cells expressing IL-2R was seen with cells that were maintained under constant selection pressure for expression of the neor gene, which was expressed from an internal promoter. Similar results were obtained when cultures were selected initially for neor gene expression and maintained without selection thereafter. In contrast, stable expression was observed in CFT1 cells for at least one year following multiple infections in the absence of G418 selection. In conclusion, (i) transduction of foreign genes into human airway epithelial cells using an amphotropic retrovirus vector can be highly efficient in the presence of appropriate polycations and multiple exposures; and (ii) stable expression of a non-selected gene in these epithelial cells is better maintained without selection.  相似文献   

12.
The success and validity of gene therapy and DNA vaccination in in vivo experiments and human clinical trials depend on the ability to produce large amounts of plasmid DNA according to defined specifications. A new method is described for the purification of a cystic fibrosis plasmid vector (pCF1-CFTR) of clinical grade, which includes an ammonium sulfate precipitation followed by hydrophobic interaction chromatography (HIC) using a Sepharose gel derivatized with 1,4-butanediol-diglycidylether. The use of HIC took advantage of the more hydrophobic character of single-stranded nucleic acid impurities as compared with double-stranded plasmid DNA. RNA, denatured genomic and plasmid DNAs, with large stretches of single strands, and lipopolysaccharides (LPS) that are more hydrophobic than supercoiled plasmid, were retained and separated from nonbinding plasmid DNA in a 14-cm HIC column. Anion-exchange HPLC analysis proved that >70% of the loaded plasmid was recovered after HIC. RNA and denatured plasmid in the final plasmid preparation were undetectable by agarose electrophoresis. Other impurities, such as host genomic DNA and LPS, were reduced to residual values with the HIC column (<6 ng/microg pDNA and 0.048 EU/microg pDNA, respectively). The total reduction in LPS load in the combined ammonium acetate precipitation and HIC was 400,000-fold. Host proteins were not detected in the final preparation by bicinchoninic acid (BCA) assay and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Plasmid identity was confirmed by restriction analysis and biological activity by transformation experiments. The process presented constitutes an advance over existing methodologies, is scaleable, and meets quality standards because it does not require the use of additives that usually pose a challenge to validation and raise regulatory concerns.  相似文献   

13.
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.  相似文献   

14.

Background

The pig lung, given its gross anatomical, histological and physiological similarities to the human lung, may be useful as a large animal model, in addition to rodents, in which to assess the potential of vectors for pulmonary airway gene transfer. The aim of this study was to assess the utility of the pig lung as a model of gene transfer to the human lung with a synthetic vector system.

Methods

The LID vector system consists of a complex of lipofectin (L), integrin‐binding peptide (I) and plasmid DNA (D). LID complexes containing a β‐galactosidase reporter gene under a CMV promoter or a control plasmid at1 mg/3 ml PBS, or 3 ml buffer, was administered to the right lower lobe ofthe pig lung through a bronchoscope. Pigs were culled at 48 h and lung sections prepared for immunohistochemical and histological analysis. Bronchoalveolar lavage fluid was collected and analysed for TNF‐α by ELISA.

Results

Immunohistochemical staining for the β‐galactosidase reporter gene indicated high efficiency of gene transfer by the LID vector to pig bronchial epithelium with 46% of large bronchi staining positively. There was no evidence for vector‐specific inflammation assessed by leukocytosis and cytokine production.

Conclusions

This study demonstrates the use of the pig for studies of gene transfer in the lung and confirms in a second species the potential of the LID vector for gene therapy of pulmonary diseases such as cystic fibrosis. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

15.
《Gene》1998,210(1):163-172
This report describes the construction of a new yeast artificial chromosome (YAC) vector designed for gene transfer into mammalian cells. For ease of use, the two arms of the vector were cloned separately. The vector harbours the Neo and Hyg genes for dominant selection in mammalian cells, a putative human origin of replication, a synthetic matrix attachment region and two loxP sites (one on each arm). The cloning ability of the vector was demonstrated by successful propagation of the cDNA of the cystic fibrosis gene, CFTR, as a YAC in Saccharomyces cerevisiae. A YAC containing the entire CFTR gene was also constructed by retrofitting the two arms of a pre-existing clone (37AB12) with the two arms of the novel vector. Both the cDNA and entire gene containing YACs were circularized in yeast by inducible expression of the Cre recombinase. Recombination occurred very specifically at the loxP sequences present on the two arms of the YAC. Applications of the vector to gene transfer are discussed.  相似文献   

16.
17.
18.
19.
HVJ-envelope vector for gene transfer into central nervous system   总被引:2,自引:0,他引:2  
To overcome some problems of virus vectors, we developed a novel non-viral vector system, the HVJ-envelope vector (HVJ-E). In this study, we investigated the feasibility of gene transfer into the CNS using the HVJ-E both in vitro and in vivo. Using the Venus reporter gene, fluorescence could be detected in cultured rat cerebral cortex neurons and glial cells. In vivo, the reporter gene (Venus) was successfully transfected into the rat brain by direct injection into the thalamus, intraventricular injection, or intrathecal injection, without inducing immunological change. When the vector was injected after transient occlusion of the middle cerebral artery, fluorescence due to EGFP gene or luciferase activity could be detected only in the injured hemisphere. Finally, luciferase activity was markedly enhanced by the addition of 50 U/ml heparin (P<0.01). Development of efficient HVJ-E for gene transfer into the CNS will be useful for research and clinical gene therapy.  相似文献   

20.
Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and alpha(v) integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34(+) cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34(+) cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an alpha(v) integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34(+) cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34(+) cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34(+) cells expressing alpha(v) integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34(+) cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34(+) cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34(+) c-Kit(+) cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34(+) c-Kit(+) cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号