首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using brush-border membrane (BBM) vesicles prepared from the intestine of the European eel, the specificity of L-alanine and L-proline Na+-dependent transport was investigated by measuring the uptake of isotopically labelled substrates. In the presence of Na+ ions, cross-inhibition between alanine and proline transports was observed; in addition alpha-(methylamino)isobutyric acid (MeAIB) inhibited proline but had no effect on alanine uptake. These results can be explained by the presence, in eel intestinal BBM vesicles, of at least two distinct agencies for Na+-dependent proline and alanine translocation. The first system is specific for alanine and short-chain neutral amino acids; the second system, specific for imino acids and the N-methylated analogues, is regulated by alanine concentration.  相似文献   

2.
Monitoring the fluorescence quenching of the pH-sensitive dye Acridine orange, proton accumulation in the presence of an inside-negative transmembrane potential was measured in eel (Anguilla anguilla) intestinal brush-border membrane vesicles. It was demonstrated that the proton accumulation was specifically increased by the presence of the dipeptide glycyl-glycine in the extravesicular space, showing saturation kinetics at increasing dipeptide concentrations and was specifically inhibited by diethylpyrocarbonate. Data reported suggest the presence of an electrical-potential-dependent H+/glycyl-glycine cotransport system in the eel intestinal brush-border membrane vesicles.  相似文献   

3.
Monitoring the fluorescence quenching of the pH-sensitive dye Acridine orange, proton accumulation in the presence of an inside-negative transmembrane potential was measured in eel (Anguilla anguilla) intestinal brush-border membrane vesicles. It was demonstrated that the proton accumulation was specifically increased by the presence of the dipeptide glycyl-glycine in the extravesicular space, showing saturation kinetics at increasing dipeptide concentrations and was specifically inhibited by diethylpyrocarbonate. Data reported suggest the presence of an electrical-potential-dependent H+/glycyl-glycine cotransport system in the eel intestinal brush-border membrane vesicles.  相似文献   

4.
The transport of L-proline was studied in brush-border membrane vesicles isolated from the kidneys of newborn rats. In contrast with the rapid initial uptake with an 'overshoot' observed in adult vesicles, uptake by the newborn vesicle was slow, showed no 'overshoot', and proline continued to accumulate at a time when the adult vesicle had already equilibrated. L-Proline transport in the newborn rat occurs by Na+-dependent and independent mechanisms. There appeared to be essentially no uptake by anti-luminal vesicles isolated from newborn rat kidney. These observations may help to explain the prolinuria that occurs in the newborn animal.  相似文献   

5.
Previous work using human jejunal brush-border membrane vesicles has demonstrated the existence of a distinct transport system in man for acidic amino acids. This system is energized by an inwardly directed Na+ gradient and an outwardly directed K+ gradient. These studies further characterize the transport of L-glutamate in the human jejunal brush-border membrane vesicles. Efflux studies were performed by loading the brush-border membrane vesicles with radiolabeled L-glutamate and sodium chloride. Extravesicular K+ accelerated the efflux of L-glutamate when compared to extravesicular Na+ or choline, indicating that potassium serves to recycle the carrier. Unlabeled extravesicular L-glutamate (but not D-glutamate) also enhanced the efflux of radiolabeled L-glutamate demonstrating that there is a bidirectional similarity to the transport system. The effect of pH on the transport system was also investigated by varying the intravesicular and extravesicular pH from 5.5 to 9. A pH environment of 6.5 produced the highest initial uptake rates as well as the greatest overshoots for transport of L-glutamate into brush-border membrane vesicles. The imposition of an inwardly directed pH gradient (5.5 outside, 7.5 inside) accelerated both the influx and efflux of L-glutamate. These results demonstrate that the L-glutamate carrier system in human jejunum appears to have similar energizing characteristics in either direction across the brush-border membrane. In addition, the system operates at an optimal pH of 6.5 and protonation of the system may enhance its mobility.  相似文献   

6.
This study describes evidence for the existence of a H+/glycine symport system in rabbit renal brush-border membrane vesicles. An inward proton gradient stimulates glycine transport across the brush-border membrane, and this H+-driven glycine uptake is attenuated by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It is a positive rheogenic process, i.e. the H+-dependent glycine uptake is further enhanced by an intravesicular negative potential. Glycine uptake is stimulated to a lesser degree by an inward Na+ gradient. H+-dependent glycine uptake is inhibited by sarcosine (69%), an analog amino acid, imino acids (proline 81%, hydroxy proline 67%), and beta-alanine (31%), but not by neutral (L-leucine) or basic (L-lysine) amino acids. The results demonstrate that H+ glycine co-transport system in rabbit renal brush-border membrane vesicles is a carrier-mediated electrogenic process and that transport is shared by imino acids and partially by beta-alanine.  相似文献   

7.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

8.
Folate binding and transport by rat kidney brush-border membrane vesicles   总被引:1,自引:0,他引:1  
[3H]Pteroylglutamic acid (PteGlu) uptake was studied using brush-border membrane vesicles isolated from rat kidney. Results on the uptake of [3H]PteGlu by brush-border membrane vesicles incubated in media of increasing osmolarities demonstrated that uptake was contributed by two components, intravesicular transport and membrane binding. Both the components of the uptake exhibited similar pH dependence, with maxima at pH 5.6, and were found to be saturable mechanisms with Km values of 6.7.10(-7) and 11.2.10(-7) M, respectively. These studies show that PteGlu is transported by isolated rat kidney brush-border membrane vesicles in a manner consistent with a saturable system and that a binding component may be functionally associated with this.  相似文献   

9.
This study demonstrates the existence of calcium channels in the apical membranes of the hepatopancreatic blister (B) cells of Marsupenaeus japonicus. Using brush-border membrane vesicles we demonstrated that the channel-mediated calcium passive flux was saturable and was stimulated by a transmembrane electrical potential difference and inhibited by barium. We raised a monoclonal antibody (Mab 24A4) against the calcium channel, which allowed us to inhibit the channel-mediated calcium uptake. By immunocytochemistry, using Mab 24A4, we demonstrated that these channels are located at the apical membrane of hepatopancreatic B cells. Finally, by measuring the calcium uptake in R- and B-enriched cell suspensions, we showed that only the plasma membrane of the B cells expresses a channel-mediated calcium uptake inhibited by barium, verapamil and the monoclonal antibody 24A4. The plasma membrane of R cells did not show calcium channels.Abbreviations ELISA enzyme-linked immunosorbent assay - BBMV brush-border membrane vesiclesCommunicated by G. Heldmaier  相似文献   

10.
Recent studies of Fe2+ uptake by mouse proximal intestine brush-border membrane vesicles revealed low-affinity, NaCl-sensitive and high-affinity, NaCl-insensitive, components of uptake (Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta 814, 381-388). In this study, the former component is demonstrated to show a strong pH dependence with an optimum of pH 6.8-6.9. Studies at pH 6.5, where the low affinity component is inhibited by more than 25-fold compared with pH 7.2, suggest that the pH-sensitive component represents transport across the brush-border membrane followed by intravesicular binding. Cholate extracts of brush-border membrane vesicles contain pH- and NaCl-sensitive Fe2+ binding moieties which may be involved in the transfer of Fe2+ across the intestinal brush-border membrane and subsequent binding inside the vesicles. Fe2+ uptake by brush-border membrane vesicles from the duodenum of hypoxic mice is higher than uptake by vesicles from control-fed animals, suggesting the existence of a regulable brush-border membrane Fe2+ carrier.  相似文献   

11.
The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dilution of such preloaded proteoliposomes into a buffer containing [3H]proline resulted in the accumulation of this amino acid against a considerable concentration gradient. A second driving force for proline accumulation was an electrochemical potential difference for Na+ across the membrane. More than a 10-fold accumulation was seen with a sodium electrochemical gradient while no accumulation was found with proton motive force alone. The optimal pH for the L-proline carrier activities for both counterflow and sodium gradient-driven uptake was between pH 6.0 and 7.0. The stoichiometry of the co-transport system was approximately one Na+ for one proline. The effect of different phospholipids on the proline transport activity of the reconstituted carrier was also studied. Both phosphatidylethanolamine and phosphatidylglycerol stimulate the carrier activity while phosphatidylcholine and cardiolipin were almost inactive.  相似文献   

12.
Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV was generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid uptake at concentrations of up to 80 microM revealed the presence of a single transport system for each of these amino acids with a Kt of less than 4 microM. The mode of energy coupling to solute uptake was analyzed by imposition of artificial ion diffusion gradients. The uptake of alanine and lysine was driven by a membrane potential and a transmembrane pH gradient. In contrast, the uptake of proline was driven by a membrane potential and a transmembrane chemical gradient of sodium ions. The mechanistic stoichiometry for the solute and the coupling ion was close to unity for all three amino acids. The Na+ dependence of the proline carrier was studied in greater detail. Membrane potential-driven uptake of proline was stimulated by Na+, with a half-maximal Na+ concentration of 26 microM. At Na+ concentrations above 250 microM, proline uptake was strongly inhibited. Generation of a sodium motive force and maintenance of a low internal Na+ concentration are most likely mediated by a sodium/proton antiporter, the presence of which was suggested by the Na(+)-dependent alkalinization of the intravesicular pH in inside-out membrane vesicles. The results show that both H+ and Na+ can function as coupling ions in amino acid transport in Acinetobacter spp.  相似文献   

13.
Transport characteristics of procainamide in the brush-border membrane isolated from rabbit small intestine were studied by a rapid-filtration technique. Procainamide uptake by brush-border membrane vesicles was stimulated by an outward H(+) gradient (pH(in) = 6.0, pH(out) = 7.5) against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H(+) gradient was subjected to rapid dissipation by the presence of a protonophore, FCCP. An outward H(+) gradient-dependent procainamide uptake was not caused by H(+) diffusion potential. The initial uptake of procainamide was inhibited by other tertiary amines with N-dimethyl or N-diethyl moieties in their structures, such as triethylamine, dimethylaminoethyl chloride, and diphenhydramine, but not by tetraethylammonium and thiamine. Furthermore, procainamide uptake was stimulated by preloading the vesicles with these tertiary amines (trans-stimulation effect), indicating the existence of a specific transport system for tertiary amines. These findings indicate that procainamide transport in the intestinal brush-border membrane is mediated by the H(+)/tertiary amine antiport system that recognizes N-dimethyl or N-diethyl moieties in the structures of tertiary amines.  相似文献   

14.
A novel imino-acid carrier in the enterocyte basolateral membrane   总被引:1,自引:0,他引:1  
Basolateral membrane vesicles prepared from rat small intestinal epithelial cells were used to study the sodium-independent transport of L-proline. The uptake of L-proline was unaffected by the presence of sodium and showed saturation kinetics (Kt = 0.5 mM and Vmax = 23.3 pmol/mg protein per s). Competition experiments indicated that other amino acids had an affinity for the carrier system with L-leucine greater than L-alanine greater than sarcosine greater than glycine greater than L-lysine greater than OH-proline greater than taurine greater than beta-alanine greater than D-alanine greater than D-proline greater than L-serine greater than phenylalanine greater than valine greater than D-serine greater than phenylalanine greater than valine greater than D-serine greater than MeAIB greater than methionine greater than threonine. This pathway does not resemble those previously described either in the brush-border membrane of intestinal epithelial cells or the plasma membrane of other cell types. The lack of effect of methionine and threonine indicate that proline is not using the L-type system, while the very low affinity for MeAIB and the Na+ independence suggest that this is a novel system for imino acids. The relatively high capacity of this system and its low Kt, which is almost identical to the proline system in the brush-border membrane, strongly suggest that this is an important pathway in the final step for proline absorption by the small intestine.  相似文献   

15.
We examined the role of pH gradient and membrane potential in dipeptide transport in purified intestinal and renal brush-border membrane vesicles which were predominantly oriented right-side out. With an intravesicular pH of 7.5, changes in extravesicular pH significantly affected the transport of glycyl-L-proline and L-carnosine, and optimal dipeptide transport occurred at an extravesicular pH of 5.5-6.0 in both intestine and kidney. When the extravesicular pH was 5.5, glycyl-L-proline transport was accelerated 2-fold by the presence of an inward proton gradient. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated glycyl-L-proline transport, and the stimulation was observed in the presence and absence of Na+. A carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced H+ diffusion potential (interior-positive) reduced dipeptide transport. It is suggested that glycyl-L-proline and proton(s) are cotransported in intestinal and renal brush-border membrane vesicles, and that the process results in a net transfer of positive charge.  相似文献   

16.
Using as the host cell, a proline-requiring mutant of Chinese hamster ovary cell (CHO-K1), it was possible to arrest the differentiation of amastigote forms of Trypanosoma cruzi at the intermediate intracellular epimastigote-like stage. Complete differentiation to the trypomastigote stage was obtained by addition of L-proline to the medium. This effect was more pronounced using the T. cruzi CL-14 clone that differentiates fully at 33 degrees C (permissive temperature) and poorly at 37 degrees C (restrictive temperature). A synchronous differentiation of T. cruzi inside the host-cell is then possible by temperature switching in the presence of proline. It was found that differentiation of intracellular epimastigotes and trypomastigote bursting were proline concentration dependent. The intracellular concentration of proline was measured as well as the transport capacity of proline by each stage of the parasite. Amastigotes have the highest concentration of free proline (8.09 +/- 1.46 mM) when compared to trypomastigotes (3.81 +/- 1.55) or intracellular epimastigote-like forms (0.45 +/- 0.06 mM). In spite of having the lowest content of intracellular free proline, intracellular epimastigotes maintained the highest levels of L-proline transport compared to trypomastigotes and intracellular amastigotes, providing evidence for a high turnover for the L-proline pool in that parasite stage. This is the first report to establish a relationship between proline concentration and intracellular differentiation of Trypanosoma cruzi in the mammalian host.  相似文献   

17.
We have investigated the transport characteristics of L-phenylalanyl-L-prolyl-L-alanine in renal brush-border membrane vesicles isolated from Japan Fisher 344 rats. This particular rat strain genetically lacks dipeptidyl peptidase IV. Owing to the absence of this enzyme, the tripeptide was found to be completely resistant to hydrolysis by the renal brush-border membrane vesicles. Uptake of the tripeptide into these membrane vesicles in the presence of an inwardly directed Na+ gradient was slightly greater than in the presence of a K+ gradient, but there was no evidence for active transport. On the contrary, uptake was very rapid in the presence of an inside-alkaline transmembrane pH gradient, and accumulation of the tripeptide inside the vesicles against a concentration gradient could be demonstrated under these conditions. The uptake was drastically reduced by dissipation of the pH gradient. The uptake was stimulated by an inside-negative membrane potential and inhibited by an inside-positive membrane potential. Moreover, the uptake was greater in voltage-clamped membrane vesicles than in control vesicles. Many di- and tripeptides inhibited this pH gradient-stimulated uptake of Phe-Pro-Ala. The apparent dissociation constant for the tripeptide was 48 microM. High performance liquid chromatography analysis of the intravesicular content at the peak of the overshoot revealed that the tripeptide was transported across the membrane almost entirely in the intact form. These data provide the first direct evidence for the presence of an electrogenic tripeptide-proton symport in renal brush-border membranes.  相似文献   

18.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

19.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

20.
The uptake of spermine by isolated rat intestinal brush-border membrane vesicles was studied. Uptake was biphasic, with an initial rapid uptake followed by a prolonged slower phase. Spermine uptake was not affected by a Na+ electrochemical gradient. The equilibrium uptake of spermine was considerably dependent upon the medium pH. At pH 7.5 the degree of uptake was higher than that at pH 6.5 and was inversely proportional to the extravesicular osmolarity with a relatively high binding, which was estimated by extraporation to infinite extravesicular osmolarity (zero intravesicular space), while the uptake at pH 6.5 was not altered under the various medium osmolarities. A kinetic analysis of the initial uptake rate of spermine at 37 degrees C gave a Km of 24.2 microM and Vmax of 206.1 pmol/mg protein per min. Furthermore, the uptake at 4 degrees C was nonlinear, providing evidence for saturability. These findings suggest that spermine was associated with intestinal brush-border membrane vesicles in two ways, by binding to the outside and inside of membrane vesicles. The interaction of spermine and the apical membrane can be a contributory factor in the accumulation of this polyamine in the intestine of the intact animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号