首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined whether the mitochondrial ATP-sensitive K channel (K(ATP)) is an effector downstream of protein kinase C-epsilon (PKC-epsilon) in the mechanism of preconditioning (PC) in isolated rabbit hearts. PC with two cycles of 5-min ischemia/5-min reperfusion before 30-min global ischemia reduced infarction from 50.3 +/- 6.8% of the left ventricle to 20.3 +/- 3.7%. PC significantly increased PKC-epsilon protein in the particulate fraction from 51 +/- 4% of the total to 60 +/- 4%, whereas no translocation was observed for PKC-delta and PKC-alpha. In mitochondria separated from the other particulate fractions, PC increased the PKC-epsilon level by 50%. Infusion of 5-hydroxydecanoate (5-HD), a mitochondrial K(ATP) blocker, after PC abolished the cardioprotection of PC, whereas PKC-epsilon translocation by PC was not interfered with 5-HD. Diazoxide, a mitochondrial K(ATP) opener, infused 10 min before ischemia limited infarct size to 5.2 +/- 1.4%, but this agent neither translocated PKC-epsilon by itself nor accelerated PKC-epsilon translocation after ischemia. Together with the results of earlier studies showing mitochondrial K(ATP) opening by PKC, the present results suggest that mitochondrial K(ATP)-mediated cardioprotection occurs subsequent to PKC-epsilon activation by PC.  相似文献   

2.
3.
Ischemic preconditioning (I-PC) induced by brief episodes of ischemia and reperfusion (I/R) protects the heart against sustained I/R. Although activation of mitochondrial K(ATP) channels (mitoK(ATP)) interacting with reactive oxygen species (ROS) has been proposed as a key event in this process, their role in the antiarrhythmic effect is not clear. This study was designed: 1) to investigate the involvement of mito K(ATP) opening in the effect of I-PC (1 cycle of I/R, 5 min each) on ventricular arrhythmias during test ischemia (TI, 30-min LAD coronary artery occlusion) in Langendorff-perfused rat hearts and subsequent postischemic contractile dysfunction, and 2) to characterize potential mechanisms of protection conferred by I-PC and pharmacological PC induced by mito K(ATP) opener diazoxide (DZX), with particular regards to the modulation of ROS generation. Lipid peroxidation (an indicator of increased ROS production) was determined by measurement of myocardial concentration of conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) in non-ischemic controls, non-preconditioned and preconditioned hearts exposed to TI, I-PC alone, as well as after pretreatment with DZX, mito K(ATP) blocker 5-hydroxydecanoate (5-HD) and antioxidant N-acetylcysteine (NAC). Total number of ventricular premature beats (VPB) that occurred in the control hearts (518+/-71) was significantly (P<0.05) reduced by I-PC (195+/-40), NAC (290+/-56) and DZX (168+/-22). I-PC and NAC suppressed an increase in CD and TBARS caused by ischemia indicating lower production of ROS. On the other hand, I-PC and DZX themselves moderately enhanced ROS generation, prior to TI. Bracketing of I-PC with 5-HD suppressed both, ROS production during PC and its cardioprotective effect. In conclusion, potential mechanisms of protection conferred by mito K(ATP) opening in the rat heart might involve a temporal increase in ROS production in the preconditioning phase triggering changes in the pro/antioxidant balance in the myocardium and attenuating ROS production during subsequent prolonged ischemia.  相似文献   

4.
We investigated the role of p38 mitogen-activated protein kinase (MAPK) phosphorylation and opening of the mitochondrial ATP-sensitive K(+) [(K(ATP))(mito)] channel in the adenosine A(1) receptor (A(1)AR)-induced delayed cardioprotective effect in the mouse heart. Adult male mice were treated with vehicle (5% DMSO) or the A(1)AR agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.1 mg/kg ip). Twenty-four hours later, hearts were subjected to 30 min of global ischemia and 30 min of reperfusion in the Langendorff mode. Genistein or SB-203580 (1 mg/kg i.p.) given 30 min before CCPA treatment was used to block receptor tyrosine kinase or p38 MAPK phosphorylation, respectively. 5-Hydroxydecanoate (5-HD; 200 microM) was used to block (K(ATP))(mito) channels. CCPA produced marked improvement in left ventricular function, which was partially blocked by SB-203580 and 5-HD and completely abolished with genistein. CCPA caused a reduction in infarct size (12.0 +/- 2.0 vs. 30.3 +/- 3.0% in vehicle), which was blocked by genistein (29.4 +/- 2.3%), SB-203580 (28.3 +/- 2.6%), and 5-HD (33.9 +/- 2.4%). CCPA treatment also caused increased phosphorylation of p38 MAPK during ischemia, which was blocked by genistein, SB-203580, and 5-HD. The results suggest that A(1)AR-triggered delayed cardioprotection is mediated by p38 MAPK phosphorylation. Blockade of cardioprotection with 5-HD concomitant with decrease in p38 MAPK phosphorylation suggests a potential role of (K(ATP))(mito) channel opening in phosphorylation and ensuing the late preconditioning effect of A(1)AR.  相似文献   

5.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

6.
It has been shown that orally administered geranylgeranylacetone (GGA), an anti-ulcer drug, induces expression of heat shock protein 72 (HSP72) and provides protection against ischemia-reperfusion in rat hearts. The underlying protective mechanisms, however, remain unknown. Mitochondria have been shown to be a selective target for heat stress-induced cardioprotection. Therefore, we hypothesized that preservation of mitochondrial function, owing to an opening of a putative channel in the inner mitochondrial membrane, the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, could be involved in GGA- or heat stress-induced cardioprotection against ischemia-reperfusion. Rats were treated with oral GGA or vehicle. Twenty-four hours later, each heart was isolated and perfused with a Langendorff apparatus. GGA-treated hearts showed better functional recovery, and less creatine kinase was released during a 30-min reperfusion period, after 20 min of no-flow ischemia. Concomitant perfusion with 5-hydroxydecanoate (5-HD, 100 microM) or glibenclamide (10 microM) abolished the GGA-induced cardioprotective effect. GGA also showed preserved mitochondrial respiratory function, isolated at the end of the reperfusion period, which was abolished with 5-HD treatment. GGA prevented destruction of the mitochondrial structure by ischemia-reperfusion, as shown by electron microscopy. In cultured cardiomyocytes, GGA induced HSP72 expression and resulted in less damage to cells, including less apoptosis in response to hypoxia-reoxygenation. Treatment with 5-HD abolished the GGA-induced cardioprotective effects but did not affect HSP72 expression. Our results indicate that preserved mitochondrial respiratory function, owing to GGA-induced HSP72 expression, may, at least in part, have a role in cardioprotection against ischemia-reperfusion. These processes may involve opening of the mitoK(ATP) channel.  相似文献   

7.
Previous work from our laboratory has shown that the sarcolemmal K(ATP) channel (sK(ATP)) is required as a trigger for delayed cardioprotection upon exogenous opioid administration. We also established that the mitochondrial K(ATP) (mK(ATP)) channel is not required for triggering delayed delta-opioid-induced infarct size reduction. Because mechanistic differences have been found among delta-opioids and that due to ischemic preconditioning (IPC), we determined whether the triggering mechanism of delayed IPC-induced infarct size reduction involves either the sK(ATP) or mK(ATP). Male Sprague-Dawley rats received either sham surgery or IPC (3- to 5-min cycles of ischemia and reperfusion) 24 h before being subjected to 30 min of ischemia and 2 h of reperfusion. Infarct size was determined and expressed as a percentage of the area at risk, with significance compared with sham reported at P 相似文献   

8.
A new concept of cardioprotection based on the exploitation of endogenous mechanisms is known as ischemic preconditioning (IPC). It has been hypothesized that substances released during brief ischemic stress (e.g. catecholamines) stimulate the receptors and trigger multiple cell signaling cascades. Opening of ATP-sensitive K+ channels [K(ATP)] has been suggested as a possible final step in the mechanisms of protection. In this study, the role of adrenergic activation was tested in Langendorff-perfused rat hearts subjected to test ischemia (TI; 30 min occlusion of LAD coronary artery) by: 1) mimicking IPC (5 min ischemia, 10 min reperfusion) with short-term (5 min) administration of norepinephrine (NE, 1 microM), 15 min prior to TI; 2) blockade with beta- or alpha1-receptor antagonists, propranolol (10 microM) and prazosin (2 microM), respectively, applied 15 min prior to TI during IPC. The role of K(ATP) opening was examined by perfusion with a K(ATP) blocker glibenclamide (10 microM) during IPC. Both IPC and NE-induced PC effectively reduced the incidence of ventricular tachycardia (VT) to 33% and 37%, respectively, vs 100% in the non-PC controls, whereby ventricular fibrillation (VF) was totally abolished by IPC and markedly suppressed by PC with NE (0% and 10%, respectively, vs 70% in the non-PC hearts; P < 0.05). The severity of arrhythmias (arrhythmia score, AS) was also markedly attenuated by both interventions (IPC: AS 1.7 +/- 0.4; NE-PC: AS 1.8 +/- 0.3 vs AS 4.1 +/- 0.2 in the controls; P < 0.05). Protection was not suppressed by propranolol (VT 28%; VF 14%; AS 2.2 +/- 0.6), whereas prazosin reversed the protective effect of PC (VT 83%; VF 67%; AS 4.0 +/- 0.8). Antiarrhythmic protection afforded by NE-PC was abolished by pretreatment of rats with pertussis toxin (25 microg/kg, i.p.) given 48 h prior to the experiments. Glibenclamide did not suppress the IPC-induced protection. In conclusion, the sensitivity of the rat heart to ischemic arrhythmias can be modulated by IPC. Protection is mediated via stimulation of alpha1-adrenergic receptors coupled with Gi-proteins but glibenclamide-sensitive K(ATP) channels do not appear to be involved in the mechanisms of antiarrhythmic protection in this model.  相似文献   

9.
Prolonged myocardial ischemia results in an increase in intracellular calcium concentration ([Ca(2+)]i), which is thought to play a critical role in ischemia-reperfusion injury. Ischemic preconditioning (PC) improves myocardial function during ischemia-reperfusion, a process that may involve opening mitochondrial ATP-sensitive potassium (K(ATP)) channels. Because pharmacological limitation of mitochondrial calcium concentration ([Ca(2+)]m) overload during ischemia-reperfusion has been shown to improve myocardial function, we hypothesized that PC would reduce [Ca(2+)]m during ischemia-reperfusion and that this effect was mediated by opening mitochondrial K(ATP) channels. Isolated rat hearts were subjected to 25 min of global ischemia and 30 min of reperfusion with or without PC in the presence of mitochondrial K(ATP) channel opening (diazoxide, 100 microM) and blockade [5-hydroxydecanoic acid (5-HD), 100 microM]. Contracture during ischemia (end-diastolic pressure) and functional recovery on reperfusion (developed pressure) were assessed. Total [Ca(2+)]i and [Ca(2+)]m were measured using indo 1 fluorescence. Both PC and diazoxide limited the increase in end-diastolic pressure and resulted in greater functional recovery after 30 min of reperfusion, functional effects that were partially or completely abolished by 5-HD. PC and diazoxide also significantly limited the increase in [Ca(2+)]m during ischemia-reperfusion. In addition, PC lowered [Ca(2+)]i during reperfusion, whereas diazoxide paradoxically resulted in increased [Ca(2+)]i during reperfusion. There was an inverse linear relationship between [Ca(2+)]m and developed pressure during reperfusion. PC limits the ischemia-induced increase in mitochondrial, but not total, [Ca(2+)]i, an effect mediated by opening mitochondrial K(ATP) channels. These data suggest that the lowering of mitochondrial calcium overload is a mechanism of cardioprotection in PC.  相似文献   

10.
B-type natriuretic peptide (BNP) has been reported to be released from the myocardium during ischemia. We hypothesized that BNP mediates cardioprotection during ischemia-reperfusion and examined whether exogenous BNP limits myocardial infarction and the potential role of ATP-sensitive potassium (K(ATP)) channel opening. Langendorff-perfused rat hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. The control infarct-to-risk ratio was 44.8 +/- 4.4% (means +/- SE). BNP perfused 10 min before ischemia limited infarct size in a concentration-dependent manner, with maximal protection observed at 10(-8) M (infarct-to-risk ratio: 20.1 +/- 5.2%, P < 0.01 vs. control), associated with a 2.5-fold elevation of myocardial cGMP above the control value. To examine the role of K(ATP) channel opening, glibenclamide (10(-6) M), 5-hydroxydecanoate (5-HD; 10(-4) M), or HMR-1098 (10(-5) M) was coperfused with BNP (10(-8) M). Protection afforded by BNP was abolished by glibenclamide or 5-HD but not by HMR-1098, suggesting the involvement of putative mitochondrial but not sarcolemmal K(ATP) channel opening. We conclude that natriuretic peptide/cGMP/K(ATP) channel signaling may constitute an important injury-limiting mechanism in myocardium.  相似文献   

11.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

12.
We studied the role of mitochondrial ATP-sensitive K(+) (K(ATP)) channels in modifying functional responses to 20 min global ischemia and 30 min reperfusion in wild-type mouse hearts and in hearts with approximately 250-fold overexpression of functionally coupled A(1)-adenosine receptors (A(1)ARs). In wild-type hearts, time to onset of contracture (TOC) was 303 +/- 24 s, with a peak contracture of 89 +/- 5 mmHg. Diastolic pressure remained elevated at 52 +/- 6 mmHg after reperfusion, and developed pressure recovered to 40 +/- 6% of preischemia. A(1)AR overexpression markedly prolonged TOC to 517 +/- 84 s, reduced contracture to 64 +/- 6 mmHg, and improved recovery of diastolic (to 9 +/- 4 mmHg) and developed pressure (to 82 +/- 8%). 5-Hydroxydecanoate (5-HD; 100 microM), a mitochondrial K(ATP) blocker, did not alter ischemic contracture in wild-type hearts, but increased diastolic pressure to 69 +/- 8 mmHg and reduced developed pressure to 10 +/- 5% during reperfusion. In transgenic hearts, 5-HD reduced TOC to 348 +/- 18 s, increased postischemic contracture to 53 +/- 4 mmHg, and reduced recovery of developed pressure to 22 +/- 4%. In summary, these data are the first to demonstrate that endogenous activation of K(ATP) channels improves tolerance to ischemia-reperfusion in murine myocardium. This functional protection occurs without modification of ischemic contracture. The data also support a role for mitochondrial K(ATP) channel activation in the pronounced cardioprotection afforded by overexpression of myocardial A(1)ARs.  相似文献   

13.
Preconditioning (PC) protects against ischemia-reperfusion (I/R) injury via the activation of the JAK-STAT pathway. We hypothesized that the mediators responsible for PC can be transferred to naive myocardium through the coronary effluent. Langendorff-perfused hearts from male Sprague-Dawley rats were randomized to paired donor/acceptor protocols with or without PC in the presence or absence of the JAK-2 inhibitor AG-490 (n = 6 for each group). Warmed, oxygenated coronary effluent collected during the reperfusion phases of PC (3 cycles of 5 min ischemia and 5 min reperfusion) was administered to acceptor hearts. The hearts were then subjected to 30 min ischemia and 40 min reperfusion. The left ventricles were analyzed for phosphorylated (p)STAT-1, pSTAT-3, Bax, Bcl, Bcl-X(L)/Bcl-2-associated protein (BAD), and caspase-3 expression by Western blot. A separate group of hearts (n = 6) was analyzed for STAT activation immediately after the transfer of the PC effluent (no I-R). Baseline cardiodynamics were not different among the groups. End-reperfusion maximal change in pressure over time (+dP/dt(max)) was significantly (P < 0.05) improved in acceptor PC (3,637 +/- 199 mmHg/s) and donor PC (4,304 +/- 347 mmHg/s) hearts over non-PC donor (2,020 +/- 363 mmHg/s) and acceptor (2,624 +/- 345 mmHg/s) hearts. Similar differences were seen for minimal change in pressure over time (-dP/dt(min)). STAT-3 activation was significantly increased in donor and acceptor PC hearts compared with non-PC hearts. Conversely, pSTAT-1 and Bax expression was decreased in donor and acceptor PC hearts compared with non-PC hearts. No differences in Bcl, BAD, or caspase-3 expression were observed. Treatment with AG-490 attenuated the recovery of +/-dP/dt in acceptor PC hearts and significantly reduced pSTAT-3 expression. The PC coronary effluent activates JAK-STAT signaling, limits apoptosis, and protects myocardial performance from I/R injury.  相似文献   

14.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

15.
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.  相似文献   

16.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

17.
18.
Previous studies in our laboratory suggest that an acute inhibition of glycogen synthase kinase 3 (GSK3) by SB-216763 (SB21) is cardioprotective when administered just before reperfusion. However, it is unknown whether the GSK inhibitor SB21 administered 24 h before ischemia is cardioprotective and whether the mechanism involves ATP-sensitive potassium (K(ATP)) channels and the mitochondrial permeability transition pore (MPTP). Male Sprague-Dawley rats were administered the GSK inhibitor SB21 (0.6 mg/kg) or vehicle 24 h before ischemia. Subsequently, the rats were acutely anesthetized with Inactin and underwent 30 min of ischemia and 2 h of reperfusion followed by infarct size determination. Subsets of rats received either the sarcolemmal K(ATP) channel blocker HMR-1098 (6 mg/kg), the mitochondrial K(ATP) channel blocker 5-hydroxydecanoic acid (5-HD; 10 mg/kg), or the MPTP opener atractyloside (5 mg/kg) either 5 min before SB21 administration or 5 min before reperfusion 24 h later. The infarct size was reduced in SB21 compared with vehicle (44 +/- 2% vs. 61 +/- 2%, respectively; P < 0.01). 5-HD administered either before SB21 treatment or 5 min before reperfusion the following day abrogated SB21-induced protection (54 +/- 4% and 61 +/- 2%, respectively). HMR-1098 did not affect the SB21-induced infarct size reduction when administered before the SB21 treatment (43 +/- 1%); however, HMR-1098 partially abrogated the SB21-induced infarct size reduction when administered just before reperfusion 24 h later (52 +/- 1%). The MPTP opening either before SB21 administration or 5 min before reperfusion abrogated the infarct size reduction produced by SB21 (61 +/- 2% and 62 +/- 2%, respectively). Hence, GSK inhibition reduces infarct size when given 24 h before the administration via the opening K(ATP) channels and MPTP closure.  相似文献   

19.
We have previously shown that a nonlethal dose of lipopolysaccharide (LPS) decreases L-selectin expression of neutrophils (PMNs), thereby preventing PMN-mediated reperfusion injury in the isolated heart. In the present study we determined whether or not that dose of LPS would protect hearts during in vivo ischemia and reperfusion by preventing PMN-induced reperfusion injury. Rats receiving saline vehicle showed marked myocardial injury (necrotic area/area at risk = 82%+/-2%) and significant depression in left ventricular function as assessed in the isolated isovolumic heart preparation at constant flow rates of 5, 10, 15, and 20 ml/min. The administration of LPS (100 microg/kg body wt) 7 hr prior to ischemia resulted in a reduction in myocardial damage (necrotic area/area at risk = 42%+/-3%) and preservation of function. Myocardial function was similar to that of sham ischemic saline- and LPS-treated rats. Moreover, PMN infiltration as determined by histology was quantitatively more severe in hearts of saline-treated rats than in hearts of LPS-treated rats. Isolated hearts from vehicle- and LPS-treated animals undergoing sham ischemia in vivo recovered to the same extent after in vitro ischemia/reperfusion, suggesting that LPS did not induce protection by altering intrinsic properties of the heart. Our results indicate that LPS-induced protection of the heart from in vivo PMN-mediated ischemia/reperfusion injury may be due to decreased L-selectin expression of PMNs in LPS-treated animals.  相似文献   

20.
Hypoxia from birth increases resistance to myocardial ischemia in infant rabbits. We hypothesized that increased cardioprotection in hearts chronically hypoxic from birth persists following development in a normoxic environment and involves increased activation of nitric oxide synthase (NOS) and ATP-dependent K (K(ATP)) channels. Resistance to myocardial ischemia was determined in rabbits raised from birth to 10 days of age in a normoxic (Fi(O(2)) = 0.21) or hypoxic (Fi(O(2)) = 0.12) environment and subsequently exposed to normoxia for up to 60 days of age. Isolated hearts (n = 8/group) were subjected to 30 min of global ischemia followed by 35 min of reperfusion. At 10 days of age, resistance to myocardial ischemia (percent recovery postischemic recovery left ventricular developed pressure) was higher in chronically hypoxic hearts (68 +/- 4%) than normoxic controls (43 +/- 4%). At 10 days of age, N(G)-nitro-L-arginine methyl ester (200 microM) and glibenclamide (3 microM) abolished the cardioprotective effects of chronic hypoxia (45 +/- 4% and 46 +/- 5%, respectively) but had no effect on normoxic hearts. At 30 days of age resistance to ischemia in normoxic hearts declined (36 +/- 5%). However, in hearts subjected to chronic hypoxia from birth to 10 days and then exposed to normoxia until 30 days of age, resistance to ischemia persisted (63 +/- 4%). L-NAME or glibenclamide abolished cardioprotection in previously hypoxic hearts (37 +/- 4% and 39 +/- 5%, respectively) but had no effect on normoxic hearts. Increased cardioprotection was lost by 60 days. We conclude that cardioprotection conferred by adaptation to hypoxia from birth persists on subsequent exposure to normoxia and is associated with enhanced NOS activity and activation of K(ATP) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号