首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E B Olson 《Life sciences》1987,41(2):161-167
During ventilatory acclimatization to hypoxia in rats, PaCO2 progressively falls from about 40 torr in normoxia (PIO2 approximately equal to 150 torr) to a new steady-state at about 23 torr in chronic hypoxia (24 or more hours at PIO2 approximately equal to 90 torr). In acute (20 or 60 minutes) hypoxia naloxone treatment caused a hyperventilation greater than that caused by acute hypoxia alone. Following 20 minutes hypoxia, naloxone treated rats had a PaCO2 = 28.6 +/- 0.7 torr (mean +/- 95% confidence limits) which was significantly lower (P less than .001) than the saline treated PaCO2 = 31.0 +/- 0.6 torr. In contrast, in normoxia and at 24 hour hypoxia and at 20 minute return to normoxia following 24 hours hypoxia, naloxone treatment had no effect on PaCO2. We conclude that in the rat about one third of the ventilatory acclimatization to hypoxia is due to a progressively decreasing endogenous opioid-like inhibition of ventilation.  相似文献   

2.
We have compared the ventilatory responses of intact and carotid body-denervated (CBD) goats to moderate [partial pressure of O2 in arterial blood; (Pao2) approximately 44 Torr] and severe (Pao2 approximately 33 Torr) many time points for up to 7 days of hypobaria. In the intact group there were significant time-dependent decreases in partial pressure of CO2 in arterial blood (PaCO2) in both moderate and severe hypoxemia (approximately-7 and -11 Torr) that were largely complete by 8 h of hypoxemia and maintained throughout. Acute restoration of normoxia in chronically hypoxic intact animals produced time-dependent increases in Paco2 over 2 h, but hypocapnia persisted relative to sea-level control. Arterial plasma [HCO3-] and [H+] decreased, and [Cl-] increased with a time course and magnitude consistent with developing hypocapnia. Chronic CBD, per se, resulted in a sustained, partially compensated respiratory acidosis, as PaCO2 rose 6 Torr and base excess rose 3 mEq/1, [Cl-] fell 1 mEq/1, and pHa fell 0.01 units. During exposure to identical levels of arterial hypoxemia as in the intact group. CBD animals showed no significant changes in PaCO2, [H+]a, or [HCO3-]a at any time during moderate or severe hypoxemia. Plasma [C1-] remained within the normal range throughout exposure to moderate hypoxia and increased in severe hypoxia. In a few instances some hypocapnia was observed, but this was highly inconsistent and was always less than one-third of that observed in intact goats. In contrast to intact goats, acute restorations of normoxia in the chronically hypoxic CBD goats always caused hyperventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Dwinell, M. R., P. L. Janssen, J. Pizarro, and G. E. Bisgard. Effects of carotid body hypocapnia during ventilatory acclimatization to hypoxia. J. Appl.Physiol. 82(1): 118-124, 1997.Hypoxicventilatory sensitivity is increased during ventilatory acclimatizationto hypoxia (VAH) in awake goats, resulting in a time-dependent increasein expired ventilation (E). Theobjectives of this study were to determine whether the increasedcarotid body (CB) hypoxic sensitivity is dependent on the level of CB CO2 and whether the CBCO2 gain is changed during VAH.Studies were carried out in adult goats with CB blood gases controlled by an extracorporeal circuit while systemic (central nervous system) blood gases were regulated independently by the level of inhaled gases. Acute E responsesto CB hypoxia (CB PO2 40 Torr) and CBhypercapnia (CB PCO2 50 and 60 Torr)were measured while systemic normoxia and isocapnia were maintained. CBPO2 was then lowered to 40 Torr for 4 h while the systemic blood gases were kept normoxic and normocapnic.During the 4-h CB hypoxia, E increasedin a time-dependent manner. Thirty minutes after return to normoxia,the ventilatory response to CB hypoxia was significantly increasedcompared with the initial response. The slope of the CBCO2 response was also elevatedafter VAH. An additional group of goats(n = 7) was studied with asimilar protocol, except that CB PCO2was lowered throughout the 4-h hypoxic exposure to prevent reflexhyperventilation. CB PCO2 wasprogressively lowered throughout the 4-h CB hypoxic period to maintainE at the control level. After the 4-hCB hypoxic exposure, the ventilatory response to hypoxia was alsosignificantly elevated. However, the slope of the CBCO2 response was not elevatedafter the 4-h hypoxic exposure. These results suggest that CBsensitivity to both O2 andCO2 is increased after 4 h of CBhypoxia with systemic isocapnia. The increase in CB hypoxic sensitivityis not dependent on the level of CBCO2 maintained during the 4-hhypoxic period.

  相似文献   

4.
5.
The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were exposed during 2 wk either to hypoxia [barometric pressure (PB) = 420 mmHg] or normoxia (PB = 760 mmHg). At the end of exposure the medulla was removed to measure the concentration of nitric oxide (NO) metabolites, the expression of NMDA-NR1 receptor, and nNOS by real-time RT-PCR and Western blot. We also measured the ventilatory response [fraction of inspired O(2) (Fi(O(2))) = 0.21 and 0.08] before and after S-methyl-l-thiocitrulline treatment (SMTC, nNOS inhibitor, 10 mg/kg ip). Chronic hypoxia caused an increase in ventilation that was reduced after SMTC treatment mainly through a decrease in tidal volume (Vt) in normoxia and in acute hypoxia. However, the difference observed in the magnitude of acute hypoxic ventilatory response [minute ventilation (Ve) 8% - Ve 21%] in acclimatized mice was not different. Acclimatization to hypoxia induced a rise in NMDA receptor as well as in nNOS and NO production. In conclusion, our study provides evidence that activation of nNOS is involved in the ventilatory acclimatization to hypoxia in mice but not in the hypoxic ventilatory response (HVR) while the increased expression of NMDA receptor expression in the medulla of chronically hypoxic mice plays a role in acute HVR. These results are therefore consistent with central nervous system plasticity, partially involved in ventilatory acclimatization to hypoxia through nNOS.  相似文献   

6.
Carotid bodies are functionally immature at birth and exhibit poor sensitivity to hypoxia. Previous studies have shown that continuous hypoxia at birth impairs hypoxic sensing at the carotid body. Intermittent hypoxia (IH) is more frequently experienced in neonatal life. Previous studies on adult animals have shown that IH facilitates hypoxic sensing at the carotid bodies. On the basis of these studies, in the present study we tested the hypothesis that neonatal IH facilitates hypoxic sensing of the carotid body and augments ventilatory response to hypoxia. Experiments were performed on 2-day-old rat pups that were exposed to 16 h of IH soon after the birth. The IH paradigm consisted of 15 s of 5% O2 (nadir) followed by 5 min of 21% O2 (9 episodes/h). In one group of experiments (IH and control, n = 6 pups each), sensory activity was recorded from ex vivo carotid bodies, and in the other (IH and control, n = 7 pups each) ventilation was monitored in unanesthetized pups by plethysmography. In control pups, sensory response of the carotid body was weak and was slow in onset (approximately 100 s). In contrast, carotid body sensory response to hypoxia was greater and the time course of the response was faster (approximately 30 s) in IH compared with control pups. The magnitude of the hypoxic ventilatory response was greater in IH compared with control pups, whereas changes in O2 consumption and CO2 production during hypoxia were comparable between both groups. The magnitude of ventilatory stimulation by hyperoxic hypercapnia (7% CO2-balance O2), however, was the same between both groups of pups. These results demonstrate that neonatal IH facilitates carotid body sensory response to hypoxia and augments hypoxic ventilatory chemoreflex.  相似文献   

7.
Tyrosine kinases (TKs) exert multiple regulatory roles in neuronal activity and synaptic plasticity and could be involved in modulation of cardiovascular and respiratory control mechanisms within the dorsocaudal brain stem. To study this issue, the cardioventilatory responses to 1-microl microinjection within the dorsocaudal brain stem of either vehicle (Veh), the inactive TK inhibitor analog tyrphostin A1 (A1; 1 mM), or the active TK inhibitors genistein (Gen; 10 mM) and tyrphostin A25 (A25; 1 mM) were assessed by whole body plethysmography in unrestrained Sprague-Dawley adult rats. No changes in minute ventilation, heart rate, or mean arterial pressure occurred with Veh, A1, Gen, or A25 during room air breathing (P not significant). However, Gen and A25 attenuated the peak hypoxic ventilatory responses (HVR) to 10% O(2) (P < 0.006 vs. Veh), whereas A1 did not modify HVR (P not significant). HVR reductions by Gen and A25 were primarily due to diminished respiratory frequency enhancements (P < 0.002). No changes in heart rate or mean arterial pressure responses occurred during hypoxia with TK inhibition. In addition, increases in tyrosine phosphorylation of the NR2A/B subunits, but not of the NR2C subunit, of the N-methyl-D-aspartate receptor occurred at 5, 30, and 60 min of hypoxia in the dorsocaudal brain stem and returned to baseline values at 120 min. We conclude that hypoxia induces tyrosine phosphorylation of the N-methyl-D-aspartate glutamate receptor, and TK inhibition within the dorsocaudal brain stem attenuates components of HVR in conscious rats.  相似文献   

8.
31P nuclear magnetic resonance spectroscopy (31P-NMRS) was performed on brain cross sections of four human subjects before and after 7 days in a hypobaric chamber at 447 Torr to test the hypothesis that brain intracellular acidosis develops during acclimatization to high altitude and accounts for the progressively increasing ventilation that develops (ventilatory acclimatization). Arterial blood gas measurements confirmed increased ventilation. At the end of 1 wk of hypobaria, brain intracellular pH was 7.023 +/- 0.046 (SD), unchanged from preexposure pH of 6.998 +/- 0.029. After return to sea level, however, it decreased to 6.918 +/- 0.032 at 15 min (P less than 0.01) and 6.920 +/- 0.046 at 12 h (P less than 0.01). The ventilatory response to hypoxia increased [from 0.35 +/- 0.11 (l/min)/(-%O2 saturation) before exposure to 0.69 +/- 0.19 after, P = 0.06]. Brain intracellular acidosis is probably not a supplemental stimulus to ventilatory acclimatization to high altitude. However, brain intracellular acidosis develops on return to normoxia from chronic hypoxia, suggesting that brain pH may follow changes in blood and cerebrospinal fluid pH as they are altered by changes in ventilation.  相似文献   

9.
We tested the hypothesis that the decline in muscle sympathetic activity during and after 8 h of poikilocapnic hypoxia (Hx) was associated with a greater sympathetic baroreflex-mediated responsiveness. In 10 healthy men and women (n=2), we measured beat-to-beat blood pressure (Portapres), carotid artery distension (ultrasonography), heart period, and muscle sympathetic nerve activity (SNA; microneurography) during two baroreflex perturbations using the modified Oxford technique before, during, and after 8 h of hypoxia (84% arterial oxygen saturation). The integrated baroreflex response [change of SNA (DeltaSNA)/change of diastolic blood pressure (DeltaDBP)], mechanical (Deltadiastolic diameter/DeltaDBP), and neural (DeltaSNA/Deltadiastolic diameter) components were estimated at each time point. Sympathetic baroreflex responsiveness declined throughout the hypoxic exposure and further declined upon return to normoxia [pre-Hx, -8.3+/-1.2; 1-h Hx, -7.2+/-1.0; 7-h Hx, -4.9+/-1.0; and post-Hx: -4.1+/-0.9 arbitrary integrated units (AIU) x min(-1) x mmHg(-1); P<0.05 vs. previous time point for 1-h, 7-h, and post-Hx values]. This blunting of baroreflex-mediated efferent outflow was not due to a change in the mechanical transduction of arterial pressure into barosensory stretch. Rather, the neural component declined in a similar pattern to that of the integrated reflex response (pre-Hx, -2.70+/-0.53; 1-h Hx, -2.59+/-0.53; 7-h Hx, -1.60+/-0.34; and post-Hx, -1.34+/-0.27 AIU x min(-1) x microm(-1); P < 0.05 vs. pre-Hx for 7-h and post-Hx values). Thus it does not appear as if enhanced baroreflex function is primarily responsible for the reduced muscle SNA observed during intermediate duration hypoxia. However, the central transduction of baroreceptor afferent neural activity into efferent neural activity appears to be reduced during the initial stages of peripheral chemoreceptor acclimatization.  相似文献   

10.
低氧习服大鼠骨骼肌毛细血管密度和血流供应的变化特点   总被引:4,自引:0,他引:4  
目的:观察大鼠在低氧习服过程中,骨骼肌毛细血管密度和血流供应的变化规律。方法:大鼠在模拟海拔5000m低氧5、15和30d后,用肌球蛋白ATP酶(mATPase)组织化学方法显示骨骼肌Ⅰ、Ⅱ型纤维和毛细血管并进行图像分析;用放射性微球法测定骨骼肌血流量。结果:低氧5d组大鼠骨骼肌纤维即出现明显萎缩,15d和30d组大鼠毛细血管密度显著增高,但单位面积内毛细血管数/肌纤维数(C/F)的比值无明显变化。在所观测的时间内,各组大鼠骨骼肌血流量未见明显变化。结论:大鼠在低氧习服过程中,毛细血管并未发生真正的增生,而由于骨骼肌纤维出现萎缩,使毛细敌国管数目相对增多。  相似文献   

11.
12.
Zhuang J  Xu F  Campen M  Hernandez J  Shi S  Wang R 《Life sciences》2006,78(22):2654-2661
Hypoxia inhibits K+ channels of chemoreceptors of the carotid body (CB), which is reversed by transient carbon monoxide (CO), suggesting an inhibitory effect of CO on hypoxic stimulation of carotid chemoreceptors. Therefore, we hypothesized that the ventilatory responses to hypoxic stimulation of the CB might be depressed in intact rats by transient inhalation of CO. Anesthetized, spontaneously breathing rats were exposed to room air, and 1 min of 11% O2 (HYP) and CO (0.25-2%) alone and in combination (HYP+CO). We found that transient CO did not affect baseline cardiorespiratory variables, but significantly attenuated hypoxic ventilatory augmentation, predominantly via reduction of tidal volume. To distinguish whether this CO modulation occurs at the CB or within the central nervous system, the cardiorespiratory responses to electrical stimulation of the fastigial nucleus (FN), a cerebellar nucleus known excitatory to respiration, were compared before and during transient CO. Our results showed that the FN-mediated cardiorespiratory responses were not significantly changed by transient CO exposure. To evaluate the effect of CO accumulation, we also compared baseline cardiorespiratory responses to 5 min of 1% and 2% CO, respectively. Interestingly, only the latter produced a biphasic ventilatory response (initial increase followed by decrease) associated with hypotension. We conclude that eupneic breathing in anesthetized rat was not affected by transient CO, but was altered by prolonged exposure to higher levels of CO. Moreover, transient CO depresses hypoxic ventilatory responses mainly through peripherally inhibiting hypoxic stimulation of carotid chemoreceptors.  相似文献   

13.
After a period of ventilatory acclimatization to high altitude (VAH), a degree of hyperventilation persists after relief of the hypoxic stimulus. This is likely, in part, to reflect the altered acid-base status, but it may also arise, in part, from the development during VAH of a component of carotid body (CB) activity that cannot be entirely suppressed by hyperoxia. To test this hypothesis, eight volunteers undergoing a simulated ascent of Mount Everest in a hypobaric chamber were acutely exposed to 30 min of hyperoxia at various stages of acclimatization. For the second 10 min of this exposure, the subjects were given an infusion of the CB inhibitor, dopamine (3 microg. kg(-1). min(-1)). Although there was both a significant rise in ventilation (P < 0.001) and a fall in end-tidal PCO(2) (P < 0.001) with VAH, there was no progressive effect of dopamine infusion on these variables with VAH. These results do not support a role for CB in generating the persistent hyperventilation that remains in hyperoxia after VAH.  相似文献   

14.
Phenibut, a nonspecific GABA derivative, is clinically used as an anxiolytic and tranquilizer in psychosomatic conditions. A GABA-ergic inhibitory pathway is engaged in respiratory control at both central and peripheral levels. However, the potential of phenibut to affect the O2-related chemoreflexes has not yet been studied. In this study we seek to determine the ventilatory responses to changes in inspired O2 content in anesthetized, spontaneously-breathing rats. Steady-state 5-min responses to 10% O2 in N2 and 100% O2 were taken in each animal before and 1 h after phenibut administration in a dose 450 mg/kg, i.p. Minute ventilation and its frequency and tidal components were obtained from the respiratory flow signal. We found that after a period of irregular extension of the respiratory cycle, phenibut stabilized resting ventilation at a lower level [20.0±3.3 (SD) vs 31.1±5.2 ml/min before phenibut; P<0.01]. The ventilatory depressant effect of phenibut was not reflected in the hypoxic response. In relative terms, this response was actually accentuated after phenibut; the peak hypoxic ventilation increased by 164% from baseline vs the 100% increase before phenibut. Regarding hyperoxia, its inhibitory effect on breathing was more expressed after phenibut. In conclusion, the GABA-mimetic phenibut did not curtail hypoxic ventilatory responsiveness, despite the presence of GABA-ergic pathways in both central and peripheral, carotid body mechanisms mediating the hypoxic chemoreflex. Thus, GABA-mediated synaptic inhibition may be elaborated in a way to sustain the primarily defensive ventilatory chemoreflex.  相似文献   

15.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

16.
17.
Long-term effects of hypoxia are largely due to its modulatory effects on proliferation and differentiation of epithelial and endothelial cells, processes also regulated by the transforming growth factor (TGF)-beta system. We investigated the effects of hypoxia on the TGF-beta system in rat lungs from different developmental stages. Sprague-Dawley rats were exposed to 9.5% oxygen during either the first 2 wk of life or adulthood. Analysis revealed an arrest of alveolarization in hypoxic postnatal day 14 rats. Bioactive TGF-beta levels in bronchoalveolar lavage fluid were increased in these animals, and Western blot analysis revealed upregulation of TGF-beta receptor (TbetaR) I and II. None of these changes was observed in hypoxic adults. Hypoxia did, however, lead to decreased expression of TbetaRIII in both postnatal day 14 and adult rats. Immunohistochemical analysis localized TbetaRI-III predominantly to bronchiolar and alveolar epithelium; these patterns did not change with hypoxia. Thus we observed changes in TGF-beta activity and TbetaR isotype expression in rat lung that parallel the arrest in alveolarization seen with chronic hypoxia in early development. These alterations may partly explain the morphological changes observed in hypoxia.  相似文献   

18.
Patients with obstructive sleep apnea (OSA) show augmented ventilatory, sympathetic and cardiovascular responses to hypoxia. The facilitatory effect of chronic intermittent hypoxia (CIH) on the hypoxic ventilatory response has been attributed to a potentiation of the carotid body (CB) chemosensory response to hypoxia. However, it is a matter of debate whether the effects induced by CIH on ventilatory responses to hypoxia are due to an enhanced CB activity. Recently, we studied the effects of short cyclic hypoxic episodes on cat cardiorespiratory reflexes, heart rate variability, and CB chemosensory activity. Cats were exposed to cyclic hypoxic episodes repeated during 8 hours for 4 days. Our results showed that CIH selectively enhanced ventilatory and carotid chemosensory responses to acute hypoxia. Exposure to CIH did not increase basal arterial pressure, heart rate, or their changes induced by acute hypoxia. However, the spectral analysis of heart rate variability of CIH cats showed a marked increase of the low/high frequency ratio and an increased variability in the low frequency band of heart rate variability, similar to what is observed in OSA patients. Thus, it is likely that the enhanced CB reactivity to hypoxia may contribute to the augmented ventilatory response to hypoxia.  相似文献   

19.
20.
The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号