首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carrot (Daucus carota L.) cell suspension cultures grew well when provided with glucose, fructose, sucrose or raffinose. Galactose and melibiose supported less growth unless supplemented with glucose or fructose. In combination with ten different sugar mixtures, 2-deoxy-D-glucose (dGlc) inhibited culture growth. Inhibitory effects of dGlc were more marked with fructose, melibiose, raffinose or mixtures of these sugars in the culture medium. The presence of glucose or galactose reduced the inhibitory effects of dGlc on culture growth. Experiments with radioactive labelled sugars demonstrated that dGLc uptake was greater in the presence of fructose than glucose, and that growth inhibition of dGlc coincided with its uptake. Reduced protein content was also associated with the inhibitory effects of dGlc. Cultured cells contained lower levels of invertase (EC 3.2.1.26) activity during the active phase of culture growth (up to 25 days after subculture) than when growth had peaked and subsequently declined. Acid and alkaline invertase activities were not greatly reduced by exogenous hexoses. Invertase activity was greatest during periods of low protein content in all cultures and was inhibited by dGlc during the latter phases of the culture period. Free intracellular sugars throughout the culture period consisted mainly of glucose and fructose.  相似文献   

2.
The protective effect of zinc against slight teratogenical action, exerted by low cadmium concentrations, was evaluated in Bufo arenarum embryos treated simultaneously with both cations or preincubated with Zn before Cd treatment. Data on survival, malformations, and delay in development pointed out that Zn could prevent the deleterious effects of Cd in previous and simultaneous treatments with that heavy metal.  相似文献   

3.
The yeast Kluyveromyces marxianus has been pointed out as a promising microorganism for a variety of industrial bioprocesses. Although genetic tools have been developed for this yeast and different potential applications have been investigated, quantitative physiological studies have rarely been reported. Here, we report and discuss the growth, substrate consumption, metabolite formation, and respiratory parameters of K. marxianus CBS 6556 during aerobic batch bioreactor cultivations, using a defined medium with different sugars as sole carbon and energy source, at 30 and 37 °C. Cultivations were carried out both on single sugars and on binary sugar mixtures. Carbon balances closed within 95 to 101 % in all experiments. Biomass and CO2 were the main products of cell metabolism, whereas by-products were always present in very low proportion (<3 % of the carbon consumed), as long as full aerobiosis was guaranteed. On all sugars tested as sole carbon and energy source (glucose, fructose, sucrose, lactose, and galactose), the maximum specific growth rate remained between 0.39 and 0.49 h?1, except for galactose at 37 °C, which only supported growth at 0.31 h?1. Different growth behaviors were observed on the binary sugar mixtures investigated (glucose and lactose, glucose and galactose, lactose and galactose, glucose and fructose, galactose and fructose, fructose and lactose), and the observations were in agreement with previously published data on the sugar transport systems in K. marxianus. We conclude that K. marxianus CBS 6556 does not present any special nutritional requirements; grows well in the range of 30 to 37 °C on different sugars; is capable of growing on sugar mixtures in a shorter period of time than Saccharomyces cerevisiae, which is interesting from an industrial point of view; and deviates tiny amounts of carbon towards metabolite formation, as long as full aerobiosis is maintained.  相似文献   

4.
Red beet hairy root cultures, obtained after genetic transformation with Agrobacterium rhizogenes, are completely heterotrophic and synthesize betalaines (BNs). Upon subjecting the hairy roots to treatments containing different sugars (3% w/v) it was found that sucrose was rapidly utilized, followed by maltose, and a very limited use of glucose, but the other hexoses – fructose, lactose, xylose and galactose or glycerol totally suppressed both growth and BN synthesis. No habituation or adaptability to maltose or glucose occurred, evidenced by the lack of growth upon re-culture in respective medium. Glycerol, was not taken up alone, but was utilized to a considerable extent in the presence of low levels of sucrose for growth only but not BN synthesis. Red beet hairy root culture did not exogenously hydrolyse sucrose to hexoses, as there were only traces of reducing sugar present in the medium soon after inoculation, without an increase later, confirmed by HPLC. There was an increase in medium osmolarity in the presence of fructose indicating the exudation of certain compounds from the roots. Red beet hairy roots appear useful as a model system to study sugar metabolism/signalling due to their sensitivity to different sugars that may directly link to morphological changes and BN synthesis.  相似文献   

5.
The effects of adding sugars to high- and low-tar cigarettes on the mutagenicity of their smoke condensates were studied using Salmonella typhimurium TA100 and TA98 with and without metabolic activation. The sugars tested were glucose, fructose, galactose, sorbitol, sucrose and lactose. The lowest mutagenicities observed with these sugars per mg of smoke condensate assayed on TA98 with metabolic activation were 37% (high-tar cigarettes) and 22% (low-tar cigaretts) of that of smoke condensate from untreated cigarettes. Addition of sugars increased the total amounts of smoke condensates, but the mutagenicities of the total condensates were also decreased by all the sugars, the lowest values being 35% (high-tar cigarettes) and 36% (low-tar cigarettes) of that of smoke condensates from cigarettes without added sugar. On assay with TA100 with metabolic activation, decreases in both specific and total mutangenicities of condensates of high-tar cigarettes were observed with all the sugars tested except galactose and sucrose. Treatment with glucose, fructose or sorbitol decreased the specific mutagenicity of condensates of low-tar cigarettes and glucose and fructose reduced also their total mutagenicity. The effects of added sugars were more marked when assayed on TA98 than on TA100 and of the sugars tested fructose and sorbitol had the greatest effects. Addition of sugars had no effect of the mutagenicity of cigarette-smoke condensate without metabolic activation.  相似文献   

6.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

7.
The effect of various abiotic stresses on germination rate, growth and soluble sugar content in Sorghum bicolor (L.) Moench cv. CSH 6 seed embryos and endosperm during early germination was investigated. Under stress conditions germination, water potential and tissue water content decreased markedly. Subsequently, this reduction resulted in marked decreases in fresh weight both in embryos and endosperm. Conversely, a substantial increase in dry weight was observed. Furthermore, a considerable increase in the sugar contents in both embryo and endosperm was detected. The fructose level was always higher than glucose and sucrose in response to various stresses. However, as compared to the control the level of glucose and sucrose was higher in embryos and endosperm after stress treatments. Based upon these results a possible physiological role of sugars in the germination of sorghum seeds is discussed.  相似文献   

8.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

9.
Differential effect of hexoses on hamster embryo development in culture   总被引:6,自引:0,他引:6  
The effects of glucose, fructose, and galactose on hamster embryo development in the absence of phosphate were studied in culture. One- and two-cell embryos were cultured to the blastocyst stage in HECM-9 medium without hexose or in medium with increasing concentrations of hexoses. Embryo development, cell number, and cell allocation were assessed in blastocysts. Blastocyst viability was determined by transfer to pseudopregnant recipients. Although 0.25 mM fructose increased mean cell number, low glucose concentrations had no stimulatory effect on development to blastocyst. Both galactose and 5.0 mM glucose were detrimental to embryos. Addition of 0.5 mM glucose increased implantation and fetal viability as compared with controls. Compared with 0.5 mM glucose, treatment with 0.25 mM fructose gave similar implantation and fetal viability, whereas 5.0 mM glucose tended to decrease implantation and significantly decreased fetal development. These data demonstrate that morphology is a poor indicator of embryo viability and that exposure of preimplantation embryos to glucose or fructose is important for embryo viability post-transfer. Although no difference in blastocyst viability was detected between embryos cultured with 0.25 mM fructose and those cultured with 0.5 mM glucose, increased cell numbers obtained with fructose suggest that fructose may be more appropriate than glucose for inclusion in culture medium.  相似文献   

10.
To evaluate the embryotrophic role of three hexoses (glucose, fructose, and galactose), bovine embryos derived from somatic cell nuclear transfer (SCNT) or in vitro-fertilization (IVF) were cultured in a modified synthetic oviductal fluid (mSOF), which contained either glucose (1.5 or 5.6 mM), fructose (1.5 or 5.6 mM), or galactose (1.5 or 5.6 mM). Compared to 1.5 mM glucose, use of 1.5 mM fructose significantly enhanced blastocyst formation in both SCNT (23 vs. 33%) and IVF embryos (26 vs. 34%), while 5.6 mM fructose did not improve blastocyst formation. Using 1.5 mM galactose did not improve blastocyst formation in SCNT embryos (22 vs. 23%), whereas it significantly inhibited blastocyst formation in IVF embryos (26 vs. 0%). In both SCNT and IVF embryos, 5.6 mM glucose or galactose significantly inhibited embryo development. In a second experiment, in glucose-free mSOF, fructose at concentrations of 0.75, 1.5, 3.0, or 5.6 mM was able to support to morula (32-42 vs. 12%) and blastocyst formation (30-38 vs. 12%) compared to 0 mM fructose. In Experiment 3, addition of fructose (1.5, 3.0, or 5.6 mM) to mSOF containing 1.5 mM glucose did not further promote blastocyst formation in SCNT embryos compared with replacement with 1.5 mM fructose only. Replacement of glucose with 1.5 mM fructose significantly increased total blastomeres (143 vs. 123 cells) and trophectodermal (TE) cells (116 vs. 94 cells) and decreased inner cell mass (ICM) to TE cell ratio (0.24 vs. 0.31) in blastocysts, compared to 1.5 mM glucose. The combined addition of 1.5 mM fructose and glucose significantly increased ICM cell number (36.7 cells) and ICM/TE ratio (0.46). In conclusion, fructose might be a more efficient energy substrate than glucose for producing large number of transferable blastocysts derived from SCNT.  相似文献   

11.
Fourteen naturally occurring sugars were individually tested with respect to their effect on Cotesia glomerata longevity. Parasitoids kept with solutions of either sucrose, glucose and fructose lived for >30 days. This constitutes a factor 15 increase in life span in comparison to control individuals kept with water only. Stachyose, mannose, melezitose, melibiose, maltose and erlose increased parasitoid longevity by a factor of 11.2-6.9. Solutions of galactose and trehalose had a marginal, but still significant effect. Lactose and raffinose did not raise parasitoid longevity, while rhamnose actually reduced parasitoid survival. In an additional experiment, the relationship between quantity of sugar consumption and longevity was established for all 14 sugars. To study the effect of an unsuitable sugar in sugar mixtures, a range of glucose:rhamnose mixtures was tested. Even at 20% of the sugar mixture rhamnose suppressed the nutritional benefit of the 80% glucose. The nutritional suitability of the sugars shows a positive correlation with the previously reported gustatory response towards the individual sugars. Patterns of sugar utilization are discussed with respect to hydrolytic enzymes and carbohydrate biochemical characteristics. Our findings for C. glomerata are compared to patterns of sugar utilization reported for other species. The comparison between C. glomerata and its host Pieris brassicae reveals that the parasitoid is capable of utilizing a range of sugars that are unsuitable to its herbivorous host. This specificity opens up opportunities to select food supplements for biological control programs that selectively target the antagonist, without concurrently enhancing herbivore fitness.  相似文献   

12.
Plant cells utilize various sugars as carbon sources for growth, respiration and biosynthesis of cellular components. Suspension-cultured cells of azuki bean (Vigna angularis) proliferated actively in liquid growth medium containing 1% (w/v) sucrose, glucose, fructose, arabinose or xylose, but did not proliferate in medium containing galactose or mannose. These two latter sugars thus appeared distinct from other sugars used as growth substrates. Galactose strongly inhibited cell growth even in the presence of sucrose but mannose did not, suggesting a substantial difference in their effects on cell metabolism. Analysis of intracellular soluble-sugar fractions revealed that galactose, but not mannose, caused a conspicuous decrease in the cellular level of sucrose with no apparent effects on the levels of glucose or fructose. Such a galactose-specific decrease in sucrose levels also occurred in cells that had been cultured together with glucose in place of sucrose, suggesting that galactose inhibits the biosynthesis, rather than uptake, of sucrose in the cells. By contrast, mannose seemed to be metabolically inert in the presence of sucrose. From these results, we conclude that sucrose metabolism is important for the heterotrophic growth of cells in plant suspension-cultures.  相似文献   

13.
Summary Somatic and zygotic embryos of soybean cv. Jack were analyzed for soluble carbohydrate, total lipids, and protein during development. Zygotic embryos accumulated trace amounts of fructose, galactose, and galactinol., whereas somatic embryos contained only trace amounts of galactose. Somatic embryos accumulated much higher glucose levels than zygotic embryos. Both somatic and zygotic embryos contain low levels of sucrose, myoinositol, and pinitol. Raffinose and stachyose accumulated in the late developmental stages of zygotic embryos, but only stachyose was found to accumulate in the late stage somatic embryos. Zygotic embryos contained low total lipid levels up to 50 d after flowering (DAF) and then the levels increased to 16% by 55 DAF and 21% at 65 DAF. Somatic embryos had low levels of total lipids throughout development with the maximum of only 4.7%. Soybean zygotic embryos contained about 40% protein throughout development, while the protein concentration of somatic embryos decreased from 44% to 25% as maturation approached. These studies demonstrate that the composition of Jack zygotic embryos is similar to that described for other cultivars during development while the somatic embryo composition and size is markedly different. The low somatic embryo germination often noted might be due to the abnormal development as shown by a composition different from that of mature zygotic embryos. The low concentration of the raffinose series sugars might be especially important factors.  相似文献   

14.
Microcalorimetry has been used to determine the affinity of whole cells of Escherichia coli for glucose, galactose, fructose, and lactose. Anaerobic growth thermograms were analyzed, and the Km and Vmax values for these energy substrates were measured at pH 7.8. Results obtained with this technique using various organisms growing anaerobically on different sugars are compared. This comparison shows that in practically all cases the cellular rate of catabolic activity is a hyperbolic function of the energy substrate concentrations at low sugar concentrations. In some cases this technique also allows determination of kinetics at high sugar concentrations.  相似文献   

15.
16.
The gas chromatographic separation of several monosaccharides and related sugars derivatized by methoxylation and trimethylsilylation reactions was optimized with glass capillary (SP-2250) and fused silica (SP-2100) columns. Individual sugars included aldoses, ketoses, polyols, acidic forms and N-acetylated amino sugars. Peaks were detected by selected ion monitoring (SIM). The fused silica column gave complete resolution of all peaks (two per hexose and one per hexitol) arising from glucose, galactose, mannose, fructose, sorbitol, mannitol and dulcitol. The resolution of these sugars with the glass capillary column was not as good, but full differentiation was possible on the basis of SIM. Because the fused silica column gave a better resolution of 33 sugars tested and was more easily installed than the glass capillary column, it was utilized for quantitative analysis. A deuterated algal sugar mixture used for quantitation by isotope dilution was found to contain glucose, galactose, mannose, xylose, arabinose, ribose and rhamnose. Full recoveries were obtained of various amounts of glucose, galactose, mannose, fructose and xylose added to human serum.  相似文献   

17.
Microbial growth in multisubstrate environments is posed as a problem of multivariable constraint optimization. The optimization aims at maximizing the instantaneous growth rate of cells. The model developed for microbial growth using this hypothesis involves simple representation of complex cell structure as an optimization function which regulates the interplay of cellular machinery. The model parameters are estimated using single substrate growth data. Model simulation fits very well with earlier published experimental data of bacterial growth of Klensiella oxytoca on a variety of sugar mixtures involving glucose, fructose, lactose, and xylose. Moreover, the model is also able to predict the diauxic growth of Saccharomyces cerevisiae on glucose and galactose. One of the interesting outcomes of the above representation is the ability to prove analytically that the growth on the mixture of two sugars will be diauxic if one of the substrates has a very low Ks value and a high μm value.  相似文献   

18.
A synthetic culture medium which supports a high level of growth of a scrially propagated cell suspension culture of Acer pseudoplatanus is described. The sucrose of this medium can be effectively replaced by glucose or fructose or a mixture of glucose and fructose or galactose or maltose or soluble starch. When the carbohydrate is glucose or fructose no other sugars appear in the culture medium in significant amounts. Glucose is absorbed in greater quantity than fructose from an equimolar mixture of these sugars. When sucrose is supplied both glucose and fructose appear in the medium. Glucose appears in maltose medium, and maltose and glucose in soluble starch medium. Under the standard conditions of culture, media containing 2 % sucrose or 2 % glucose become depleted of sugar before the 25th day of incubation. Enhanced yield of the cultures can be obtained by raising the initial sucrose concentration to 6 %. – A supply of nitrate is essential for maximum yield and healthy growth. Growth, in the presence of nitrate, is significantly enhanced by a supply of urea. Addition of casein hydrolysate or of a mixture of amino acids enhances growth in the presence of nitrate and urea and particularly when nitrate is omitted. – When kinetin is omitted or incorporated at the standard level (0.25 mg/I), 2,4-dichlorophenoxyacetic acid (2,4-D) at 1.0 mg/l is essential for continuation of growth at a high level. It cannot be replaced by indol-3yl-acetic acid (IAA). 1-naphthaleneacetic acid (NAA) at 10 mg/l permits of a low level of growth with abnormal aggregation. When the level of kinetin is raised to 10 mg/l a high level of growth occurs in the absence of added auxin but the cultures become brown and tend to show increasing aggregation on subculture.  相似文献   

19.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

20.
Cytokinin-dependent and cytokinin-autonomous strains of tobacco callus tissue (Nicotiana tabacum L. cv. ‘Wisconsin 38’) were grown on media containing sucrose, glucose and fructose, respectively. The tissues were kept 14 days in darkness and then transferred for 9 days to continuous light after which time the fresh weight and chlorophyll content were estimated. The highest chlorophyll concentration was recorded at sugar levels which were either suboptimal (sucrose in the case of cytokinin-dependent strain) or supraoptimal (all other sugars for both strains and sucrose for the cytokinin-autonomous strain) for tissue growth. The chlorophyll concentration was increased when the tissue was cultured on media containing glucose or fructose,i.e. sugars whioh did not support the growth as well as sucrose. Chlorophyll synthesis in the cytokinin-autonomous strain is significantly lower than in the cytokinin-dependent strain. This difference was independent of either sugar source or concentration. These results support the observed inverse relationship between tissue growth and plastid development and the limited metabolic activity of plastids in cytokinin-autonomous tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号