首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents data showing that the sympathetic autonomic areas of the cat thoracolumbar spinal cord contain nerve terminals and fibres with immunoreactivity for at least seven neuropeptides. The distribution in the intermediolateral cell column of the terminals and fibres which contain enkephalin-, neuropeptide Y-, neurotensin-, substance P-, and neurophysin II-like immunoreactivity (ENK, NPY, NT, SP, and NP2, respectively) suggests that these peptides are involved in more generalized functions of the autonomic nervous system. On the other hand, peaks in density of immunoreactivity at certain levels suggest that different levels of influence of sympathetic preganglionic neurons by the various peptides may occur along the length of the thoracolumbar cord. The distribution of terminals and fibres containing somatostatin- and oxytocin-like immunoreactivity (SS and OXY) suggests that these peptides may be part of specific pathways to particular sympathetic preganglionic neurons. The possible sources of the terminals and fibres containing ENK, NPY, NT, SS, and SP include the spinal cord and supraspinal areas, whereas the source of these structures with OXY and NP2 is most likely supraspinal. The data suggest that coexistence of peptides and interactions between structures containing different neuropeptides occur in the spinal autonomic areas. It is speculated that neuropeptides have an important role to play in the regulation of the cardiovascular division of the autonomic nervous system.  相似文献   

3.
4.
Epinephrine (E) and norepinephrine (NE) levels were measured simultaneously in the adrenal veins of 6 patients before and after stimulation with 0.25 mg beta 1-24 ACTH. In 1 patient with Cushing's syndrome, E and NE were also measured before and 30 min after dexamethasone. There was a significant increase in NE and E secretion (p less than 0.002) from both adrenal glands after ACTH stimulation. In the patient with Cushing's syndrome, there was also a slight increase in plasma E levels after dexamethasone. It is postulated that ACTH stimulated NE and E secretion by augmenting blood flow through the adrenals and by induction of tyrosine hydroxylase and dopamine beta-hydroxylase, although a direct effect of ACTH on NE and E secretion cannot be excluded. It is also possible that the increase in adrenal catecholamine secretion after ACTH may be due to ACTH augmentation of catecholamine secretion by endogenous opioids such as beta-endorphin.  相似文献   

5.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

6.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal responses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuations of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

7.
8.
9.
T L Krukoff 《Peptides》1987,8(1):109-112
Coexistence of four neuropeptides in sympathetic preganglionic neurons (SPN) was investigated immunohistochemically in cats after intrathecal administration of colchicine. Neurons were studied for the coexistence of all combinations of enkephalin-, neurotensin-, somatostatin-, and substance P-like immunoreactivity (ENK, NT, SS, and SP, respectively) in the intermediolateral cell column (IML), nucleus intercalatus (IC), and central autonomic area (CA). The results indicate that SP coexists with all three other peptides, SS coexists with NT and SP, and ENK coexists only with SP. In all cases, SPN which contained two peptides were found in the IML in almost all levels of the thoraco-lumbar cord. Much smaller numbers of SPN which contained two peptides (in the same combinations as above) were found in the IC and not all segments contained such neurons. In the CA, only one neuron was found which contained two peptides (SP/SS). The distribution of SPN containing two peptides suggests that these neurons may participate in more general functions of the autonomic nervous system and that they are not likely involved in the innervation of specific visceral organs.  相似文献   

10.
In vitro and in situ experiments were conducted to evaluate the hypothesis that the nonclassical opioid peptide nociceptin acting on sympathetic preganglionic neurons (SPNs) inhibits spinal sympathetic outflow. First, whole cell patch recordings were made from antidromically identified SPNs from immature (12-16 day old) rat spinal cord slices. Nociceptin (0.1, 0.3, and 1 microM) concentration dependently suppressed the excitatory postsynaptic potentials (EPSPs) evoked by focal stimulation and hyperpolarized a population of SPNs; these effects were naloxone insensitive. L-Glutamate-induced depolarizations were not significantly changed by nociceptin. Results from this series of experiments indicate that nociceptin inhibits the activity of SPNs by either a presynaptic or postsynaptic site of action, whereby the peptide reduces, respectively, the amplitude of EPSPs or the excitability of SPNs. Second, intrathecal injection of nociceptin (3, 10, and 30 nmol) to urethan-anesthetized rats dose dependently reduced the mean arterial pressure and heart rate; these effects were not prevented by prior intravenous administration of naloxone (1 mg/kg). Physiological saline given intrathecally was without appreciable effects. These results, together with earlier observations of the detection of nociceptin-immunoreactive nerve fibers and nociceptin receptor immunoreactivity in the rat intermediolateral cell column, raise the possibility that the opioid peptide, which may be released endogenously, reduces spinal sympathetic outflow by depressing the activity of SPNs.  相似文献   

11.
12.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77–86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

13.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77-86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

14.
15.
Lai CC  Lin HH  Chen CW  Chen SH  Chiu TH 《Life sciences》2002,71(9):1035-1045
Lead exposure elicited an increase in blood pressure and was considered to be a cardiovascular risk factor. The involvements of sympathetic nervous system and circulating catecholamines have been implicated in lead-induced hypertension. This study examined the effects of PbCl(2) on sympathetic preganglionic neurons (SPNs) in vitro and in vivo. In vitro electrophysiological study showed that superfusion of a low concentration (5 microM) of PbCl(2), which had no effects on membrane potential and spontaneous discharge rate, enhanced excitatory postsynaptic potentials (EPSPs) in some of the SPNs examined but inhibited inhibitory postsynaptic potentials (IPSPs) in other SPNs tested. A higher concentration (50 microM) of PbCl(2) inhibited both EPSPs and IPSPs in all SPNs examined. In vivo study showed that intrathecal injection of PbCl(2) (10 and 100 nmol) via an implanted cannula to the T7-T9 segments of urethane-anesthetized rats increased both the heart rate and mean arterial pressure. The pressor and tachycardic responses of intrathecal PbCl(2) (100 nmol) were attenuated by pretreatment with intravenous administration of hexamethonium (10 mg/kg) or intrathecal AP-5 (DL-2-amino-5-phosphonovaleric acid, 100 nmol), but were not significantly antagonized by prior intrathecal administration of CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, 100 nmol). Taken together, these results demonstrated that lead may exert a stimulatory effect on SPNs, which may result from the enhancement of EPSPs and inhibition of IPSPs by low concentrations of lead.  相似文献   

16.
The localization of the sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart were investigated through retrograde axonal transport with horseradish peroxidase (HRP). HRP (4 mg or 30 mg) was injected into the subepicardial and myocardial layers in four different cardiac regions. The animals were euthanized 84-96 hours later and fixed by paraformaldehyde perfusion via the left ventricle. The brain stem and the paravertebral sympathetic ganglia from the superior cervical, middle cervical, and stellate ganglia down to the T9 ganglia were removed and processed for HRP identification. Following injection of HRP into the apex of the heart, the sinoatrial nodal region, or the right ventricle, HRP-labeled sympathetic neurons were found exclusively in the right superior cervical ganglion (64.8%) or in the left superior cervical ganglion (35%). Fewer labeled cells were found in the right stellate ganglia. After HRP injection into the left ventricle, labeled sympathetic cells were found chiefly in the left superior cervical ganglion (51%) or in the right superior cervical ganglion (38.6%); a few labeled cells were seen in the stellate ganglion bilaterally and in the left middle cervical ganglion. Also, in response to administration of HRP into the anterior part of the apex, anterior middle part of the right ventricle, posterior upper part of the left ventricle, or sinoatrial nodal region, HRP-labeled parasympathetic neurons were found in the nucleus ambiguus on both the right (74.8%) and left (25.2%) sides. No HRP-labeled cells were found in the dorsal motor nucleus of the vagus on either side.  相似文献   

17.
Responses arising in ventral root filaments and antidromic discharges of single sympathetic preganglionic neurons in the lateral horn of gray matter in segment L2 of the cat spinal cord were recorded during stimulation of the white rami communicantes in the same segment. Conduction velocities, thresholds, and refractory periods were determined for individual groups of sympathetic preganglionic fibers. Excitation was conducted more slowly along the intramedullary part of the axons of some sympathetic neurons than along the extramedullary part. In a third group of neurons studied the second antidromic discharge appeared in response to paired stimulation if the interstimulus interval was appreciably longer than their refractory period. It is postulated that axons of sympathetic preganglionic neurons in the lumber spinal cord have a thin intramedullary part and are supplied with recurrent collaterals.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 2, pp. 143–151, March–April, 1974.  相似文献   

18.
Convergence of different preganglionic fibers on antidromically identified vasomotor neurons was studied by intracellular recording from neurons of ganglia L3 and L4 of the sympathetic chain, isolated from their rostral and caudal commissures, white ramus communicans, and muscular and cutaneous (mixed) twigs of the ventral branch and dorsal branch of the mixed nerve, in cats. Neurons activated antidromically by stimulation of these twigs were confidently considered to be vasomotor. Preganglionic fibers of only the B2 and C groups were shown to converge on the vasomotor neurons, by contrast with the rest. Discharges of neurons were evoked only by excitation of preganglionic fibers of the B2-group, arising mainly from higher segments of the spinal cord and entering through the rostral commissure. Vasomotor neurons also differ from the remaining ganglion cells in the properties of their axons, which conduct excitation at a significantly slower velocity (0.95±0.05 m/sec) than axons of other neurons (1.30±0.15 m/sec).I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 592–597, November–December, 1977.  相似文献   

19.
20.
Experiments on anesthetized and immobilized cats showed that repeated antidromic discharges can be evoked in 32.5% of sympathetic preganglionic neurons of the lateral horns in segments T3, T8–9, and L2 of the spinal cord, with intervals of 16 msec or more between them, which is much greater than the refractory period of these neurons. This feature was shown not to be connected with the properties of axons of that group of neurons and, in particular, with their after-subnormality. After orthodromic discharges in neurons of this group, for a much longer period of time than could be accounted for by possible collision, no antidromic discharges likewise were evoked. As a result of antidromic activation of some of these neurons in one segment, definite inhibition of the orthodromic response of other neurons of the same segment appeared, etiher by a reflex mechanism or through stimulation of descending pathways. The results point definitely to the existence of a mechanism of recurrent inhibition in some sympathetic preganglionic neurons of the lateral horns.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 382–389, July–August, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号