首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As manufacturing systems have grown in size and complexity, material flow control has become one of the key issues for system efficiency, and determination of the number of vehicles required is an important issue in the design of the AGV (automatic guided vehicle) systems for automated material flow control. In an AGV system, a part issues a delivery request for its transportation, and then an empty vehicle is assigned based on a pre-determined vehicle selection rule and provides delivery service.This research presents a fleet sizing procedure for an AGV system with multiple pickup and delivery stations. A queueing model is used to estimate part waiting times. The fleet sizing procedure estimates the minimum number of vehicles needed to ensure a predefined part waiting time limit. While most stochastic models assume first-come-first-served or random vehicle selection rules for the selection of an empty vehicle, this model considers such additional rules as the nearest vehicle selection rule, which is the most popular among all vehicle selection rules. The performance of the proposed model is examined through computational experiments.  相似文献   

2.
Having a good estimate of a vessel’s handling time is essential for planning and scheduling container terminal resources, such as berth positions, quay cranes (QCs) and transport vehicles. However, estimating the expected vessel handling time is not straightforward, because it depends on vessel characteristics, resource allocation decisions, and uncertainties in terminal processes. To estimate the expected vessel handling time, we propose a two-level stochastic model. The higher level model consists of a continuous-time Markov chain (CTMC) that captures the effect of QC assignment and scheduling on vessel handling time. The lower level model is a multi-class closed queuing network that models the dynamic interactions among the terminal resources and provides an estimate of the transition rate input parameters to the higher level CTMC model. We estimate the expected vessel handling times for several container load and unload profiles and discuss the effect of terminal layout parameters and crane service time variabilities on vessel handling times. From numerical experiments, we find that by having QCs cooperate, the vessel handling times are reduced by up to 15 %. The vessel handling time is strongly dependent on the variation in the QC service time and on the vehicle travel path topology.  相似文献   

3.
In conventional automated storage and retrieval systems (AS/RS), storage and retrieval (S/R) machine travels simultaneously in the horizontal and vertical directions. However, S/R machine cannot support overly heavy loads, such as sea containers, so a new AS/RS, called split-platform AS/RS (SP-AS/RS), was introduced and studied in recent years. The SP-AS/RS employs vertical and horizontal platforms, which move independently, and are capable of handling heavy loads. The vertical platform which represents an elevator (or lift) with the elevator’s lifting table carries the load up and down among different tiers and the horizontal platform which represents the shuttle carrier or the shuttle vehicle can access all cells of the tier in which it belongs to. Single command cycle (SC) and dual command cycle (DC) are two main operating modes in AS/RSs. However, travel time models in all previous articles related to the SP-AS/RS are only for the SC. In this study, we first present a continuous travel time model for the DC in the SP-AS/RS under input and output (I/O) dwell point policy and validate its accuracy by computer simulations. Our model and simulation results both show that the square-in-time rack incurs the smallest expected travel time. After comparing with the existing model for the SC, we find that the DC is better than the SC in terms of the expected travel time.  相似文献   

4.
Semiconductor wafer fabrication lines can be characterized by re-entrant product flow, long production lead-time, large variety of production processes, and large capital investment. These distinctive characteristics make the flow control in the fab very complicated. Throughput rate and lead-time are among the most important performance measures. The throughput rate is usually determined by a bottleneck resource, and the lead-time depends on the machine utilization level and the amount of variability in the system. Due to the high efficiency of material handling and reduced particles, automated material handling systems such as automatic guided vehicles (AGVs), overhead hoist transporters (OHTs), and overhead shuttles (OHSs) are being widely used in wafer fabrication lines (wafer fabs) instead of human operators. Although a material handling system itself is seldom a bottleneck of production in a fab, it is important for that to effectively support the bottleneck machines to maximize the throughput and reduce production lead-time. This paper presents a vehicle dispatching procedure based on the concept of theory of constraints, in which vehicle dispatching decisions are made to utilize the bottleneck machines at the maximum level. Simulation experiments have been performed to compare the proposed vehicle dispatching procedure with existing ones under different levels of machine utilization, vehicle utilization, and local buffer capacity.  相似文献   

5.
The behaviour of blue jays (Cyanocitta cristata) hunting for dispersed, cryptic prey was investigated in an operant simulation in which jays were trained to search projected images for noctuid moths. Each image contained either a single moth or no moth. Each trial was structured so as to simulate travelling between patches, searching within patches, and attacking and handling each moth that was detected. In two experiments in which the travel time between patches was manipulated, increases in travel time produced increased persistence within patches. Although this qualitative effect was predicted by the marginal value theorem, quantitative analyses revealed that the blue jays were using a strategy that was more sophisticated and more efficient than the simple time-in-patch rule implied by the marginal value theorem.  相似文献   

6.
For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport costs. To account for traffic congestion, time-dependent travel times should be considered when constructing vehicle routes. Next, driving hours regulations, which restrict the available driving and working times for truck drivers, must be respected. Since violations are severely fined, also driving hours regulations should be considered when constructing vehicle routes, even more in combination with congestion problems. The objective of this paper is to develop a solution method for the VRP with time windows (VRPTW), time-dependent travel times, and driving hours regulations. The major difficulty of this VRPTW extension is to optimize each vehicle’s departure times to minimize the duty time of each driver. Having compact duty times leads to cost savings. However, obtaining compact duty times is much harder when time-dependent travel times and driving hours regulations are considered. We propose a restricted dynamic programming (DP) heuristic for constructing the vehicle routes, and an efficient heuristic for optimizing the vehicle’s departure times for each (partial) vehicle route, such that the complete solution algorithm runs in polynomial time. Computational experiments demonstrate the trade-off between travel distance minimization and duty time minimization, and illustrate the cost savings of extending the depot opening hours such that traveling before the morning peak and after the evening peak becomes possible.  相似文献   

7.
Akihiko Mougi  Kinya Nishimura 《Oikos》2008,117(11):1732-1740
Destabilization of one predator–one prey systems with an increase in nutrient input has been viewed as a paradox. We report that enrichment can damp population cycles by a food‐web structure that balances inflexible and flexible interaction links (i.e. specialist and generalist predators). We modeled six predator–prey systems involving three or four species in which the predators practice optimal foraging based on prey profitability determined by handling time. In all models, the balance of interaction links simultaneously decreased the amplitude of population oscillations and increased the minimum density with increasing enrichment, leading to a potential theoretical resolution of the paradox of enrichment in non‐equilibrium dynamics. The stabilization mechanism was common to all of the models. Important previous studies on the stability of food webs have also demonstrated that a balance of interaction strengths stabilizes systems, suggesting a general rule of ecosystem stability.  相似文献   

8.
Psychological studies of animal choice show that the immediate consequences of choice strongly influence preference. In contrast, evolutionary models emphasize the longer-term fitness consequences of choice. Building on recent work by Stephens & Anderson (2001, Behavioral Ecology12, 330-339), this study presents two experiments that address this conflict. Stephens & Anderson developed an alternative choice situation based on patch-leaving decisions and compared this to the binary choice, or self-control, situation typically used in psychological studies. They hypothesized that the same short-term choice rule could account for choice in both situations, maximizing long-term gains in the patch situation, but typically producing shortsighted results in the self-control case. Experiment 1 used captive blue jays, Cyanocitta cristata, to test this ‘same rule’ hypothesis. The results do not support this hypothesis, suggesting that if a single rule applies, it is probably a more complex rule. Stephens & Anderson also hypothesized that a rule based on the delay to the next meal could explain why the intertrial interval has little effect in binary choice studies, even though the analogous travel time strongly affects patch-leaving decisions. When an animal leaves a patch, it experiences a delay consisting of the travel time plus time spent searching in the patch until food is obtained. Experiment 2 tested the hypothesis that travel time and search time combine additively, behaving like a single delay. Using treatments that created the same combined delay via different combinations of travel and search time, we found no evidence of nonadditivity, suggesting that these two components may indeed be treated as a single delay. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

9.
This article presents an efficient algorithm for applying the recursion modeling approach to describe the transient operation of cellular production/assembly systems that incorporate features such as finite buffers, job-shop routing, lot sequencing, and material handling. Tests evaluate the approximation method relative to number of machines at a station, capacity of input/output buffers, degree of balance among station processing times, and sequencing rule. Furthermore, the method is demonstrated in application to a hypothetical industrial setting that involves the assembly of electronic circuit cards in a facility composed of several cells. All tests indicate that the method gives accurate estimates of transient performance within reasonable runtime. In comparison with earlier recursion models, this research incorporates a number of new features (see list above), improves the accuracy of approximation, and facilitates implementation with a new, more efficient algorithm.  相似文献   

10.
We present two models of optimal resource exploitation for sit-and-waitforagers. The first model assumes immediate recognition of sitequality and that site quality does not change over time. Thismodel predicts a forager's minimum acceptable site quality.We present a graphical analysis to show how (1) the distributionof site qualities, (2) the travel time between sites, (3) costof search, and (4) expected duration of the foraging processinfluence the minimum acceptable rate. Our second model allowssite qualities to change and relaxes the assumption of immediaterecognition. This model defines conditions of (1) state duration,(2) recognition time, (3) site abundance, and (4) cost of searchwhere the optimal policy is to stay put in a site regardlessof experience. We discuss the implications of these models forthe design and interpretation of field experiments of site useand habitat selection.  相似文献   

11.
12.
1. The functional response of predators describes the rate at which a predator consumes prey and is an important determinant of community dynamics. Despite the importance, most empirical studies have considered a limited number of models of functional response. In addition, the models often make strong assumptions about the pattern of predation processes, even though functional responses can potentially exhibit a wide variety of patterns. 2. In addition to the limited model consideration, model selections of functional response models cannot tease apart the components of predation (i.e. capture rate and handling time) when flexible traits are considered because it is always possible that many different combinations of the capture rate and handling time can lead to the same predation rate. 3. This study directly examined the capture rate and handling time of functional response in a mite community. To avoid the model selection problem, the searching and handling behaviour data were collected. The model selection was applied directly to these two components of predation data. Commonly used functional response models and models that allow for more flexible patterns were compared. 4. The results indicated that assumptions of the commonly used models were not supported by the data, and a flexible model was selected as the best model. These results suggest the need to consider a wider variety of predation patterns when characterizing a functional response. Without making a strong assumption (e.g. static handling time), model selections on functional response models cannot be used to make reliable inferences on the predation mechanisms.  相似文献   

13.
Trip-based material handling systems such as AGV systems or lift trucks are often designed with a given flow matrix (or from-to chart), which typically shows the number of loaded trips that the devices must perform per unit time between the workstations. A from-to chart that would result from the parts flow in a facility actually is dictated by the transfer batch size; that is, the number of parts transferred from one workstation to the next in one trip. In this paper, we present analytical and simulation results aimed at determining optimal or nearoptimal transfer batch sizes in manufacturing systems and develop an analytical relationship between the material handling capacity and the expected work in process (WIP) in a manufacturing system. Although the results apply to any discrete-parts flow, trip-based material handling system, they are particularly relevant for the electronics manufacturing industry, where parts (such as printed circuit boards or substrates for flat panel displays) typically are handled as a group (in specially designed containers such as cassettes) and the costs associated with WIP tend to be large. In such applications, the cassette size is the transfer batch size.  相似文献   

14.
Summary Animals often must feed away from protective cover, sometimes at a considerable risk of being preyed upon. Feeding at the maximum rate while away from cover may simultaneously minimize the time spent exposed to predators, but this is not always the case. Under some circumstances, carrying prey items to protective cover before they are consumed will minimize the time spent exposed to predators, whereas feeding at maximum efficiency (staying to eat prey where they are found) will actually increase the time spent exposed to predators. Whether or not there is a conflict between maximizing foraging efficiency and minimizing exposure time, depends upon the travel time to cover relative to the handling time of a prey item; short handling times and/or long travel times are associated with the no-conflict situation, whereas the conflict situation is associated with long handling times and/or short travel times to cover. Free-ranging chickadees foraging at an artificial patch at various distances from cover can distinguish between these two foraging situations. When there is no conflict, they stay and eat at the patch. Their behavior in the conflict situation indicates that they are tradingoff foraging considerations against the risk of predation. When the cost of carrying is low and the benefit gained is high, the chickadees elect to carry items to cover; they tend to stay and eat at the patch when the relative magnitudes of costs and benefits are reversed.  相似文献   

15.
This paper deals with the use of queuing network (QN) models for quantitatively evaluating the impact of the material handling system (MHS) on the steady-state performance of a flexible manufacturing system (FMS) at the strategic and tactical decision levels. A direct exploitation of the workload data provided by industrial experts often results in QN models that cannot be analyzed efficiently because of the prohibitive number of customer classes. In this paper, we propose a systematic data aggregation approach for deriving the aggregated characteristics of the service offered by a device of the MHS at steady state. This generic aggregation scheme explicitly captures empty trips on the device, MHS devices that have different motions depending on whether they travel empty or loaded, and enables further, consistent use of the various central server QN models appearing in the literature. The quality of the estimates provided by this automated data aggregation approach is tested on several examples, and their integration into a QN model for performance evaluation is illustrated on an FMS presented in the literature.  相似文献   

16.
We consider some models for selection in self-reproducing macromolecular systems subject to time varying environmental constraints. We show that many of the results concerning selection obtained previously for stationary constraints may be generalized and that the over-all selective behaviour even in complex enzyme coupled systems is basically the same under the time varying external conditions as it is in the stationary case.  相似文献   

17.
The goal of this study was to determine what visual information is used to navigate around barriers in a cluttered terrain. Twelve traffic pylons were arranged randomly in a 4.55 x 3.15 m travel area: there were 20 different arrangements. For each arrangement, individuals (N = 6) were positioned in 1 of 3 locations on the outside border with their eyes closed: on verbal command they were instructed to open their eyes and quickly go to 1 of 2 specified goals (2 vertical posts defining a door) located on one edge of the travel area. The movement of the body was tracked using the OPTOTRAK system, with the IREDS placed on a collar worn by the subjects. Experimental data of travel path chosen were compared with those predicted by models that incorporated different types of visual information to control path trajectory. The 6 models basically use 2 different strategies for route selection: reactive control based on visual input about the obstacle encountered in the line-of-sight travel path (Model # 1) and path planning based on different visual information (Model # 2, 3, 4, 5, and 6). The models that involve path planning are grouped into 2 categories: models 2, 3, 4, and 5 need detailed geometrical configuration of the obstacles to plan a route while model 6 plans a route based on identifying and avoiding a cluster of obstacles in the travel path. Two measures were used to compare model performance with the actual travel path: the difference in area between predicted and actual travel path and the number of trials that accurately predicted the number of turns during travel. The results suggest that route selection is not based on reactive control, but does involve path planning. The model that best predicts the travel paths taken by the individuals uses visual information about cluster of obstacles and identification of safe corridors to plan a route.  相似文献   

18.
19.
In this paper, we study job shop-like flexible manufacturing systems (FMSs) with a discrete material handling system (MHS). In such FMSs, the MHS is a critical device, the unavailability of which may induce transfer blockings of the machines. The FMS devices therefore are hierarchically structured into primary and secondary devices to manage such blocking and avoid deadlocks in these FMSs. For evaluating the quantitative steady-state performance of such FMSs, we propose an analytical queueing network model that relies on an approximate method proposed for analyzing computer systems with simultaneous possessions of resources. Such a model is obtained using the concept of passive resources and by aggregating the FMS workload data so that models are much more tractable. The analytical results are validated against discrete event simulation and shown to be very encouraging. We also show how to increase their robustness, especially under light workload conditions, by modifying an assumption of the method concerning service time distributions.  相似文献   

20.
A structural stability approach to population-genetic systems and to dynamic evolutionary games is attempted in order to examine the theoretical significance of sociobiological selection models. A criterion of weak selection is derived that is not restricted to differential reproduction in polymorphic systems but describes possible directions of evolutionary change in time scales governed by genetic mutation rates. The criterion applies to the problems of how the initial mutational basis of an adaptive trait may be established and how this may happen, for analogous traits, independently in different species. Two basic sociobiological concepts are reconsidered with reference to the criterion. It is shown that W. D. Hamilton's condition of increases in inclusive fitness due to altruistic interactions among kin expresses the structural instability of populations against the evolution of altruistic behavior. Using the dynamic approach to evolutionary game theory, it is demonstrated that if a behavioral phenotype is an evolutionarily stable strategy, it is structurally stable against perturbations of the fitness payoffs, provided selection is weak. These results are applied to material problems of the evolution of animal social behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号