首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Adult hens were given a mixture of polychlorinated biphenyls (0.5 and 2 g/kg Aroclor 1254), 3-methylcholanthrene (80 mg/kg) or beta-napthoflavone (80 mg/kg). 2. beta-Napthoflavone elevated activities of both microsomal and nonmicrosomal enzymes 48 hr after dosing, with cytochrome P-450 p-nitroanisole O-demethylase, aniline hydroxylase, and glutathione S-epoxytransferase at 319% +/- 25, 157% +/- 12, 410% +/- 26 and 120% +/- 3 of control values, respectively. 3. Aroclor 1254 and 3-methylcholanthrane also elevated microsomal enzyme activities, but did not increase the activity of glutathione S-epoxytransferase. 4. Drug metabolizing capability in control and experimental hens differed from that in rats and mice.  相似文献   

2.
N-Nitrosocarbaryl (N-methyl-1-naphthyl N-nitrosocarbamate) was intraperitoneally administered to male and female rats on four consecutive days at the following doses: 6.25 mg, 12.5 mg, 25 mg and 50 mg/kg body weight/day in olive oil solution; the controls received just the oil. In a second experiment, a daily intraperitoneal dose of 25 mg/kg of N-nitrosocarbaryl was given for 1, 2, 3 or 4 days; the animals were killed 24 h after the last treatment. The two following microsomal enzymatic activities were assayed: aniline aromatic hydroxylase and p-nitroanisole O-demethylase; the levels of cytochrome P-450, proteins and RNA were measured in the hepatic microsomal fraction. N-Nitrosocarbaryl is an inhibitor of the two investigated microsomal monooxygenases at doses of 25 and 50 mg/kg when administered on 4 consecutive days. During the daily administration, enzyme inhibition is seen in females after one day of treatment whereas cytochrome P-450 only becomes lowered after 4 days of administration. In males, no modification of this parameter is observed whereas the activities of microsomal monooxygenases are inhibited. These results suggest that N-nitrosocarbaryl could act on the active sites of the enzymes which metabolize aniline and p-nitroanisole.  相似文献   

3.
The study was undertaken to evaluate the effect of prior treatment of rats with the antimalarial drugs amodiaquine (AQ) mefloquine (MQ) and halofantrine (HF) on rat liver microsomal lipid peroxidation in the presence of 1 mM FeSO4, 1 mM ascorbate and 0.2 mM H2O2 (oxidants). Ingestion of -tocopheral, a radical chain-breaking antioxidant was also included to assess the role of antioxidants in the drug treatment. In the presence of oxidants AQ, MQ and HF elicited 288%, 175% and 225% increases in malondialdehyde (MDA) formation while the drugs induced 125%, 63% and 31% increases in the absence of oxidants respectively. Similarly, AQ, MQ and HF induced lipid hydroperoxide formation by 380%, 256%, 360% respectively in the presence of oxidants and 172%, 136% and 92% in the absence of exogenously added oxidants respectively. -tocopherol reduced AQ, MQ and HF-induced MDA formation by 40%, 55% and 52% respectively and lipid hydroperoxide formation by 53%, 59% and 54% respectively. Similarly, -tocopherol attenuated the AQ, MQ and HF-induced MDA formation by 49%, 51% and 51% in the presence of oxidants and lipid hydroperoxide formation by 61%, 62% and 47% respectively. The results indicate that rat liver microsomal lipid peroxidation could be enhanced by antimalarial drugs in the presence of reactive oxygen species and this effect could be ameliorated by treatment with antioxidants.  相似文献   

4.
Microsomal glutathione S-transferase, UDP-glucuronyl transferase, and aniline hydroxylase activities were determined in liver, renal cortex, and small intestine of control, streptozotocin-diabetic, alloxan-diabetic, and untreated insulin-injected male Wistar rats. Renal microsomal glutathione S-transferase activity showed a direct linear relationship with insulin blood levels, in agreement with our previous report on cytosolic glutathione S-transferase. This result suggests a possible regulatory mechanism of insulin that needs to be further examined. The hepatic microsomal UDP-glucuronyl transferase was only decreased in streptozotocin-diabetic rats and was not restored by insulin treatment. Intestinal UDP-glucuronyl transferase exhibited an opposite response in streptozotocin-treated animals that was not normalized by the administration of insulin. Hepatic aniline hydroxylase showed the same behaviour as intestinal UDP-glucuronyl transferase. These results suggest that streptozotocin and (or) its metabolites have a direct effect on hepatic and intestinal UDP-glucuronyl transferase activity and on hepatic aniline hydroxylase activity. On the other hand, insulin regulation of enzyme activity varies from one organ to another.  相似文献   

5.
E Hietanen  O H?nninen  M Laitinen  M Lang 《Enzyme》1978,23(2):127-134
Elaidic and linoleic acids were administered at doses of 40 and 200 mg/kg i.p. every second day for 4 weeks to rats fed a fat-free diet. The fatty acids had only a slight effect on the weight gain of the animals. The amount of microsomal protein was slightly decreased with the higher dose of linoleic acid. The higher dose level of both fatty acids decreased the microsomal phospholipid content. The relative amounts of microsomal phospholipid fatty acids were also altered due to fatty acid administration. The activity of microsomal NADPH cytochrome c reductase and microsomal cytochrome P-450 contents were decreased by the higher dose of linoleic acid. The hepatic aryl hydrocarbon hydroxylase and p-nitroanisole O-demethylase activities decreased in fatty acid-treated rats. The UDP-glucuronosyltransferase activity was also lowered after the fatty acid administration. The results suggest that fatty acid-induced changes in the activities of drug-metabolizing enzymes may be due to the microenvironmental changes of membrane-bound enzymes.  相似文献   

6.
The effect of acetylsalicylic acid, ibuprofen, indomethacin, ketoprofen, naproxen, phenylbutazone, and salicylic acid on the microsomal oxidative drug metabolism of rat liver was studied. Pretreatment of the rats with pharmacologic doses of acetylsalicylic acid, indomethacin, and ketoprofen decreased both the demethylase and hydroxylase activities of rat liver microsomes. These effects were paralleled by decreases in microsomal cytochrome P-450 content. The rate of the microsomal reactions was increased after pretreatment with ibuprofen and naproxen but only the former increased the concentration of cytochrome P-450. Phenylbutazone and salicylic acid had no in vivo effect on the hepatic monooxygenase. The addition of 1 mM of ibuprofen, indomethacin, ketoprofen, naproxen, and phenylbutazone to rat liver microsomes inhibit both the aminopyrine N-demethylase and p-nitro-anisole O-demethylase activities. The extent of the inhibition varied between 21 and 73% of the control incubation. Indomethacin, naproxen, and phenylbutazone also decreased the aniline hydroxylase activity to roughly 60% of the control value. Acetylsalicylic acid and salicylic acid had no in vitro effect on the microsomal monooxygenase. The nonsteroidal anti-inflammatory drugs produced a reverse type I binding spectrum with oxidized cytochrome P-450; indomethacin and phenylbutazone were the strongest ligands. There is no correlation between the effect of addition of nonsteroidal anti-inflammatory drugs to the hepatic microsomal homogenate and their in vivo effect on the monooxygenase activity.  相似文献   

7.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

8.
The development of four functionally diverse, hepatic enzymes (p-nitroanisole O-demethylase, aniline hydroxylase, carboxyleterase, and glucuronyltransferase (with alpha-naphthol as the aglycone acceptor)) was studied in perinatal Hartley guinea pigs from 8 days prepartum to 28 days postpartum. A good correlation was observed between the activities measured in resuspended Ca2+-aggregated microsomes and the quantities of hepatic smooth endoplasmic reticulum visible by electron microscopic examination at the different stages of development. The study demonstrated that, postnatally, the guinea pig developed competent enzymatic systems as rapidly as did other laboratory species but that, prenatally, these same enzyme(s) systems were much further advanced than those in other species.  相似文献   

9.
When methadone HCl (30 mg/kg, po) was given acutely to mice, it was found to inhibit drug metabolism as evidenced by a prolongation of hexobarbital sleeping time and zoxazolamine paralysis time. Pharmacokinetic studies revealed that this acute dose of the narcotic analgesic could also prolong the plasma half-life of aminopyrine without any change in its volume of distribution. When added to the incubation mixture containing 10,000 g mouse liver supernatant fraction and a complete system for measuring aminopyrine N-demethylase or aniline hydroxylase, methadone showed a dose-dependent inhibition of the enzymes; the former enzyme was inhibited to a greater extent than the latter one. However, subacute treatment of mice with methadone HCl (30 mg/kg, po, twice daily for 3 days) resulted in increases in liver weight, microsomal protein, and cytochrome P-450 content in consonant with the increased activities of four hepatic drug-metabolizing enzymes: aminopyrine N-demethylase, aniline hydroxylase, p-nitroanisole, O-demethylase, and benzphetamine N-demethylase. Moreover, both hexobarbital sleeping time and zoxazolamine paralysis time were shortened. The plasma half-life of aminopyrine was decreased. These changes were prevented by simultaneous administration of puromycin diHCl (80 mg/kg, ip). Methadone thus seems to act in a manner very similar to that of propoxyphene or SKF-525A, acting as a potent inhibitor of hepatic drug metabolism when given acutely and as an inducer when given subacutely.  相似文献   

10.
Alterations in microsomal drug metabolizing enzymes, microsomal lipids and some serum enzymes following pre-treatment of rats with therapeutic doses of four structurally different antimalarial compounds, chloroquine (CQ), quinine (Q), quinacrine (QK) and primaquine (PQ) have been investigated. CQ and Q significantly decreased the activities of aminopyrene N-demethylase, aniline hydroxylase and both microsomal and cytosolic glutathione S-transferases. Only aniline hydroxylase was markedly decreased by QK, while PQ did not have much effect on any of these enzymes. CQ, Q and QK significantly increased the cholesterol:phospholipid ratio while all four compounds decreased the phosphatidyl choline:sphingomyelin (PC/S) ratio. All the drugs increased the activities of the serum enzymes glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and alkaline phosphatase. The possible relationships of these results to structural variations in the four drugs being investigated has been discussed.  相似文献   

11.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

12.
Drug metabolism was studied in hepatic microsomal and post microsomal supernatant fractions from male and female athymic nude mice (nu/nu) and heterozygous (+/nu) and homozygous (+/+) wild-type controls. In males, the following enzyme activities were higher in athymic mice than in the wild-type: NADPH cytochrome c reductase, ethylmorphine and aminopyrine N-demethylases, native UDP glucuronyltransferase, and glutathione (GSH) S-aryltransferase. No differences were observed between groups in UDPNAG-activated UDP-glucuronyltransferase, N-acetyltransferase, or aniline hydroxylase activities or in amounts of cytochrome P-450. In female athymic mice, only ethylmorphine and aminopyrine N-demethylase activities were significantly higher than in female wild-type controls (+/+). The female athymic mice had mixed function oxidase activities that were less than the male athymic mice. There were no sex or strain differences in response to treatment with phenobarbital or 3-methylcholanthrene.  相似文献   

13.
The effect of propylthiouracil (PTU) pretreatment on in vivo and in vitro oxidative drug metabolism was determined in the rat. Whereas pentobarbital sleeping time (PBST) and zoxazolamine paralysis time (ZZPT) were used as indices of in vivo drug metabolizing activity, biotransformation of aminopyrine and aniline by hepatic microsomal preparations were used as indices of in vitro drug metabolizing enzymes activities. PTU pretreatment significantly prolonged both PBST and ZZPT. Whereas PTU did not affect microsomal protein concentration or cytochrome P-450 content, it significantly decreased microsomal cytochrome c reductase and aniline hydroxylase activities. These changes in enzymatic activities were observed in microsomal preparations from either non-fasted or 24-hr fasted rats. Our results suggest that PTU-induced hypothyroidism modifies the metabolism and effectiveness or toxicity of concomitantly administered drugs.  相似文献   

14.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

15.
Short-term exposure of the control and phenobarbitone-treated rats to high ambient temperature caused a different response of the hepatic microsomal cytochrome P-450-dependent monooxygenase system participating in the oxidation of aniline, aminopyrine and p-nitroanisole. The highest differences of the enzyme activities were observed in rats exposed to 28 degrees C, as compared with animals exposed to 21 degrees C or 37 degrees C.  相似文献   

16.
G O Emerole  M I Thabrew 《Enzyme》1984,31(3):129-136
Berenil (4,4-diamidinodiazoaminobenzene-diacetamide acetate) or Suramin [sodium salt of 8-(3-benzamido-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic acid] treatment of rats infected with Trypanosoma b. brucei enhanced hepatic microsomal aniline hydroxylase and p-aminopyrine N-demethylase activities. While Suramin inhibited significantly the activities of cytoplasmic glutamate dehydrogenase and lactate dehydrogenase, Berenil had no effect. The kinetic profiles of these enzymes consistently showed a Km value similar to that of controls. Both cytosolic and microsomal glutathione-S transferase and microsomal epoxide hydratase were unaffected by Suramin. However, a significant increase in cytosolic glutathione-S transferase was observed with Berenil. Microsomal phospholipids were not affected by any of the drugs.  相似文献   

17.
d-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of carnosine (CAR) or taurine (TAU), having antioxidant effects, on hepatic injury and oxidative stress in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days/week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days/week) or TAU (2.5 % w/w; in rat chow) for 2 months. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-0050x), and glutathione transferase (GST) activities were determined. Hepatic expressions of B cell lymphoma-2 (Bcl-2), Bax and Ki-67 were evaluated. Serum ALT, AST, hepatic MDA, and PC levels were observed to increase in GAL-treated rats. Hepatic Bax expression, but not Bcl-2, increased, Ki-67 expression decreased. GAL treatment caused decreases in GSH levels, SOD and GSH-Px activities in the liver. Hepatic mRNA expressions of SOD, but not GSH-Px, also diminished. CAR or TAU treatments caused significant decreases in serum ALT and AST activities. These treatments decreased apoptosis and increased proliferation and ameliorated histopathological findings in the livers of GAL-treated rats. Both CAR and TAU reduced MDA and PC levels and elevated GSH levels, SOD and GSH-Px (non significant in TAU?+?GAL group) activities. These treatments did not alter hepatic mRNA expressions of SOD and GSH-Px enzymes. Our results indicate that CAR and TAU restored liver prooxidant status together with histopathological amelioration in GAL-induced liver damage.  相似文献   

18.
Feeding of rice diet reduced the food consumption and growth of rats. Hepatic Cytochrome P-450, NADPH Cytochrome c reductase and the activity of cytochrome P-450 dependent enzymes (Aniline hydroxylase, aminopyrine N-demethylase, p-nitroanisole O-demethylase) were also decreased by feeding rice diet. Supplementation of lysine and threonine to rice diet improved the activity of these enzymes. NADPH regeneration and microsomal phosphatidylcholine were reduced by feeding rice diet. The phenobarbitone induced sleeping time was decreased by supplementing rice diet with lysine and threonine. The effect of protein is probably partly attributed to changes in membrane phosphatidylcholine content and NADPH regeneration rate.  相似文献   

19.
The effect of vegetative nervous system activation or depression (subdiaphragmatic vagotomy, atropine, proserine and acetylcholine treatments) on the hepatic microsomal enzymes activities has been studied on Wistar male rats. It is found, that hepatic denervation and atropine treatment decreased cytochrome P450 content and aniline hydroxylase activity. Proserine and acetylcholine induced an opposite effect. It is considered that these different changes in the microsomal enzyme activities with variations in the vegetative nervous system state have proved the nervous control of these processes.  相似文献   

20.
Disulfiram and diethyldithiocarbamate were administered to rats for 4 days alone (300 mg/kg, daily, per os) or in combination with phenobarbital (80 mg/kg, daily, i.p.), in order to observe the effects of these compounds on the microsomal membrane components and on the mixed-function oxygenase system. Both disulfiram and diethyldithiocarbamate increased the liver to body weight ratio, and the total hepatic protein content. Disulfiram significantly increased also the microsomal protein and phospholipid contents. Diethyldithiocarbamate and disulfiram partially prevented the increase of microsomal protein and phospholipid contents caused by phenobarbital. Disulfiram and diethyldithiocarbamate decreased the amount of cytochrome P-450 and P-420, and the activity of p-nitroanisole O-demethylase. These changes were more pronounced after diethyldithiocarbamate than after disulfiram treatment. On the contrary, the activity of NADPH-cytochrome c reductase was enhanced only by disulfiram. The induction by phenobarbital of cytochrome P-450 and p-nitrosanisole O-demethylase was partially prevented on concomitant treatment with disulfiram and diethyldithiocarbamate. These compounds. however, had an additive effect with phenobarbital in enhancing the microsomal NADPH-cytochrome c reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号