首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Infection with pathogens often leads to loss of body weight, but the cause of weight loss during infection is poorly understood. We used the infection of mice with lymphocytic choriomeningitis virus (LCMV) as a model to study how pathogens induce weight loss. If LCMV is introduced into the CNS of CTL-deficient mice, the immune response against the virus leads to a severe weight loss called wasting disease. We planned to determine what components of this antiviral immune response mediate wasting disease. By adoptive transfer, we show that CD4 T cells activated by LCMV infection are sufficient to cause wasting disease. We examined the role of cytokines in LCMV-induced wasting disease using mice lacking specific cytokines or cytokine receptors. Results of adoptive transfer experiments suggest that TNF-alpha is not involved in LCMV-induced wasting disease and show that IFN-gamma contributes to the disease. Consistent with a role for IFN-gamma in wasting, we find that IFN-gamma is necessary for LCMV-specific CD4 T cell responses in the CNS, most likely because it is required to induce MHC class II expression. Our data also indicate that IL-1 is required for LCMV-induced wasting and that IL-6 contributes to the wasting disease. Additionally, our results identify alpha-melanocyte-stimulating hormone as a potential mediator of the disease. Overall, this work defines the critical role of virus-primed CD4 T cells and of proinflammatory cytokines in the pathogenesis of wasting disease induced by LCMV infection.  相似文献   

6.
7.
8.
9.
Laboratory studies of arenaviruses have been limited to parenteral routes of infection; however, recent epidemiological studies implicate virus ingestion as a natural route of infection. Accordingly, we developed a model for oral and gastric infection with lymphocytic choriomeningitis virus to enable studies of mucosal transmission and vaccination by this additional route.  相似文献   

10.
11.
Some, but not all, viral infections induce endogenous IL-12 to drive NK cell IFN-gamma production and downstream antiviral defenses during innate immune responses. Even though lymphocytic choriomeningitis virus (LCMV) can be sensitive to IFN-gamma-mediated antiviral effects, infections with this agent do not elicit IL-12 or early IFN-gamma in immunocompetent hosts. Studies presented here demonstrate that LCMV infections of mice not only fail to induce IL-12, but also modify responsiveness to exogenous IL-12 for IFN-gamma production. IFN-gamma responses induced by IL-12 administration were greatly diminished in splenic populations, but significantly increased in serum and hepatic leukocytes, during the early course of LCMV infections. The IFN-gamma production was NK cell dependent, and the compartmental dichotomy between spleen and liver was also demonstrated in response to in vitro IL-12 stimulation. Although infections did increase proportions and numbers of liver NK cells, changes in responsiveness for IFN-gamma expression could not be explained by cell redistribution. Corroborating changes in proportions of NK cells induced to express intracellular IFN-gamma protein within the compartments were observed. The reduction in ability of splenic populations to produce IL-12-induced IFN-gamma after infection by LCMV was associated with decreased efficacy of administered IL-12 for promoting IFN-gamma-dependent antiviral effects in the spleen. Concomitantly, the maintenance of hepatic population IFN-gamma production was associated with preserved efficacy of administered IL-12 to elicit IFN-gamma-dependent antiviral effects in the liver. Taken together, these results demonstrate modifications of compartmental responses to IL-12 by viral infections and the consequences of these changes for efficacy of cytokine therapy.  相似文献   

12.
The murine immune response to lymphocytic choriomeningitis virus (LCMV) infection involves the activation of CD8+, class I MHC-restricted and virus-specific CTL. At times coinciding with CTL activation, high levels of IL-2 gene expression and production occur, the IL-2R is expressed, and T cell blastogenesis and proliferation are induced. We have previously found that, although both CD4+ and CD8+ T cell subsets transcribe IL-2, the CD4+ subset appears to be the major producer of IL-2 whereas the CD8+ subset appears to be the major proliferating population when the subsets are separated after activation in vivo. The studies presented here were undertaken to examine the contribution made by the CD4+ subset to lymphocyte proliferation in vivo. Responses to LCMV infection were examined in intact mice and in mice depleted of CD4+ or CD8+ subsets by antibody treatments in vivo. Protocols were such that in vivo treatments with anti-CD4 or anti-CD8 depleted the respective subset by greater than 90%. In situ hybridizations demonstrated that the IL-2 gene was expressed in non-B lymphocytes isolated from either CD4+ cell-depleted or CD8+ cell-depleted mice on day 7 post-infection with LCMV. When placed in culture, however, cells from CD8+ cell-depleted mice produced significantly higher levels of detectable IL-2 than did cells isolated from CD4+ cell-depleted mice on day 7 post-infection. IL-2 was apparently produced in vivo in mice depleted of either CD4+ or CD8+ cells, as expression of the gene for the p55 chain of the IL-2R, IL-2 responsiveness, and lymphocyte proliferation were observed with cells isolated from both sets of mice. Lymphocyte proliferation was shown to be sustained in mice depleted of CD4+ cells in vivo by three criteria: 1) non-B lymphocytes isolated from infected mice depleted of CD4+ cells underwent more DNA synthesis than did those isolated from uninfected mice or from infected mice depleted of CD8+ cells; 2) leukocyte yields were expanded during infection of CD4+ cell-depleted mice; and 3) CD8+ cell numbers were increased during infection of CD4+ cell-depleted mice. The majority of non-B lymphocytes having the characteristics of blast lymphocytes was recovered in the CD8+ populations isolated from infected CD4+ cell-depleted mice. These findings suggest that the requirement for the CD4+ subset to sustain CD8+ lymphocyte proliferation in vivo is limited, and that CD4+ and CD8+ cell types can function independently in many aspects of their responses to viral infections.  相似文献   

13.
The impact of prophylactic vaccination against acute and chronic infection in a Th-deficient host has not been adequately addressed because of difficulties in generating protective immunity in the absence of CD4(+) T cell help. In this study, we demonstrated that a broad CD8(+) T cell immune response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice, irrespective of the nature of the vaccine. These results indicated that optimized vaccination may lead to efficient protection against acute viral infection, even in Th-deficient individuals, but that the duration of such immunity is limited. Nevertheless, for select immunodeficiencies in which CD4(+) T cell deficiency is incomplete or transient, these results are very encouraging.  相似文献   

14.
15.
Mice 2--4 days of age were pretreated with a single 5 mg/kg dose of dianhydrodulcitol (DAD) and later infected intracerebrally with lymphocytic choriomeningitis (LCM) virus. These animals had a lower mortality rate and died later than the untreated control animals. Thus DAD pretreatment prevented in part of the animals the development of lethal meningitis, the consequence of LCM virus infection, reducing the cellular immune response. This effect of DAD could equally be observed in animals infected at the age of 16--18 days and of 4 weeks.  相似文献   

16.
Death occurred earlier and its rate was higher in one-week-old mice treated with phytohaemagglutinin (PHA) and subsequently inoculated intracerebrally with LCM virus than in their virus infected but untreated littermates. Thus PHA treatment contributed to the outcome of LCM virus infection in the form of lethal meningitis. The course of LCM virus infection in 1-week-old PHA treated mice was similar as in the untreated 2-week-old mice. This indicates that PHA treatment accelerated the development of cell mediated immunological capacity in suckling mice.  相似文献   

17.
The innate immune system uses different mechanisms to respond to infectious pathogens. Experiments evaluating the requirements for a type 1 IFN (IFN-alphabeta) response to lymphocytic choriomeningitis virus (LCMV) resulted in the surprising discovery that mice deficient in B and T cell development, i.e., RAG-deficient and SCID, had profoundly reduced levels of IFN-alphabeta in serum and spleen, despite high viral replication. In addition to lacking an adaptive immune system, these strains exhibit aberrant splenic architecture, and the defect in type 1 IFN production was also observed in mice lacking normal splenic marginal zone (MZ) organization due to genetic deficiencies in B cell development or in cytokine functions required for development of the MZ, i.e., muMT, lymphotoxin-alpha, and TNFR1. Interestingly, the IFN-alphabeta reduction was not observed after murine CMV infection. Depletion of phagocytic cells from normally developed spleens by treatment with clodronate-containing liposomes demonstrated that these populations were required for the type 1 IFN response to LCMV, but not to murine CMV, and for control of viral replication. Complete repopulation of the MZ was necessary to restore normal IFN-alphabeta production. In contrast, control of LCMV replication correlated with the return of CD11c+ cells. Taken together, these results demonstrate the complexity and sophistication of the splenic MZ in sensing and responding to particular pathogens and reveal the importance of organ architecture in the production of type 1 IFN.  相似文献   

18.
We have compared the relatedness of five different strains of lymphocytic choriomeningitis virus (LCMV) as assessed by LCMV-specific cytotoxic T lymphocytes (CTL). Several different mouse strains were injected with each of the five LCMV strains, and the cross-reactivity of virus-specific CTL generated during the acute infection was tested by killing on a panel of target cells infected with the various LCMV strains. We found that the cross-reactivity pattern of LCMV-specific CTL generated in mice of H-2d haplotype (BALB/c WEHI and DBA/2) was strikingly different from that in mice of H-2b haplotype (C57BL/6 and C3H.Sw/Sn), suggesting that the fine specificity of LCMV-specific CTL is a function of the H-2 region. The characteristic cross-reactivity patterns were also observed in (C57BL/6 X DBA/2)F1 mice, demonstrating that the repertoire of the H-2b- and H-2d-restricted LCMV-specific CTL is not changed as a result of complementation by gene products of the other major histocompatibility haplotype. Studies with congenic BALB.B10 and (BALB.B10 X BALB/c)F1 mice firmly established that the characteristic cross-reactivity patterns of LCMV-specific CTL map to the H-2 region and are not influenced by background genes outside the major histocompatibility locus. These results suggest that LCMV determinants seen in the context of H-2d-restricting elements are different from those seen in the context of H-2b-restricting elements. Moreover, our studies show that CTL can be used as probes for dissecting differences among various LCMV strains, but the degree of relatedness between the different LCMV strains is not absolute when measured by CTL recognition. Since the H-2 region regulates the fine specificity of CTL generated during LCMV infection in its natural host, the degree of cross-protective immunity developed during a viral infection apparently depends on the major histocompatibility haplotype. The importance of these findings lies in understanding susceptibility or resistance of various host populations to viral infections and in designing vaccination programs to provide immunity.  相似文献   

19.
The role of gamma interferon (IFN-gamma) in the permanent control of infection with a noncytopathic virus was studied by comparing immune responses in wild-type and IFN-gamma-deficient (IFN-gamma -/-) mice infected with a slowly invasive strain of lymphocytic choriomeningitis virus (LCMV Armstrong). While wild-type mice rapidly cleared the infection, IFN-gamma -/- mice became chronically infected. Virus persistence in the latter mice did not reflect failure to generate cytotoxic T-lymphocyte (CTL) effectors, as an unimpaired primary CTL response was observed. Furthermore, while ex vivo CTL activity gradually declined in wild-type mice, long-standing cytolytic activity was demonstrated in IFN-gamma -/- mice. The prolonged effector phase in infected IFN-gamma -/- mice was associated with elevated numbers of CD8(+) T cells. Moreover, a higher proportion of these cells retained an activated phenotype and was actively cycling. However, despite the increased CD8(+) T-cell turnover, which might have resulted in depletion of the memory CTL precursor pool, no evidence for exhaustion was observed. In fact, at 3 months postinfection we detected higher numbers of LCMV-specific CTL precursors in IFN-gamma -/- mice than in wild-type mice. These findings indicate that in the absence of IFN-gamma, CTLs cannot clear the infection and are kept permanently activated by the continuous presence of live virus, resulting in a delicate new balance between viral load and immunity. This interpretation of our findings is supported by mathematical modeling describing the effect of eliminating IFN-gamma-mediated antiviral activity on the dynamics between virus replication and CTL activity.  相似文献   

20.
This study demonstrates cell-specific selection of viral variants during persistent lymphocytic choriomeningitis virus infection in its natural host. We have analyzed viral isolates obtained from CD4+ T cells and macrophages of congenitally infected carrier mice and found that three types of variants are present in individual carrier mice: (i) macrophage-tropic, (ii) lymphotropic, and (iii) amphotropic. The majority of the isolates were amphotropic and exhibited enhanced growth in both lymphocytes and macrophages. However, some of the lymphocyte-derived isolates grew well in lymphocytes but poorly in macrophages, and a macrophage-derived isolate replicated well in macrophages but not in lymphocytes. In striking contrast, the original wild-type (wt) Armstrong strain of lymphocytic choriomeningitis virus that was used to initiate the chronic infection and from which the variants are derived grew poorly in both lymphocytes and macrophages. These three types of variants also differed from the parental virus in their ability to establish a chronic infection in immunocompetent hosts. Adult mice infected with the wt Armstrong strain cleared the infection within 2 weeks, whereas adult mice infected with the variants harbored virus for several months. These results suggest that the ability of the variants to persist in adult mice is due to enhanced replication in macrophages and/or lymphocytes. This conclusion is further strengthened by the finding that the variants and the parental wt virus grew equally well in mouse fibroblasts and that the observed growth differences were specific for cells of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号