首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various phosphodiesterase (PDE) 3,4 and 5 inhibitors have been compared with glucagon for their effectiveness at increasing hepatocyte cAMP, glycogenolysis and gluconeogenesis. Preincubation of isolated hepatocytes with PDE 3 and 4 inhibitors (50 M) for 2 h induced significant increases in cellular cAMP level. The order of effectiveness was: glucagon (78%), V11294A (42%), rolipram (40%), milrinone (36%), CDP-840 (33%), R0 20-1724 (31%), papaverine (27%), isobutylmethylxanthine (28%), isoliquiritigenin (25%), theophylline (22%), and amrinone (22%). The PDE 5 inhibitors dipyridamol and sildenafil had only a slight effect on cAMP levels. Glucose formation was increased as a result of increased glycogenolysis in the following order of effectiveness: glucagon (89%), V11294A (63%), rolipram (61%), milrinone (50%), CDP-840 (46%), R0 20-1724 (45%), sildenafil (34%), dipyridamol (31%), papaverine (30%), isobutylmethylxanthine (29%), theophylline (20%), amrinone (20%), and isoliquiritigenin (20%). Rolipram and milrinone, selective PDE 4 and PDE 3 inhibitors respectively, stimulated the gluconeogenesis of alanine, lactate + pyruvate, or fructose in hepatocytes isolated from fasted rats. On the other hand, selective cGMP specific phospodiesterase inhibitors, sildenafil and dipyridamol inhibited alanine-induced gluconeogenesis. All PDE inhibitors increased hepatocyte susceptibility to cyanide toxicity (3–4 fold) which was prevented by fructose whereas PDE 5 inhibitors did not significantly increase hepatocyte susceptibility.  相似文献   

2.
Abstract: Tyrosine hydroxylase (TH) activity is increased two- to threefold in neuroblastoma cell line NBP2 maintained in culture for 48 h in the presence of either the inhibitor of cyclic AMP-phosphodiesterase (PDE), 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO 20- 1724), or the activator of adenylate cyclase, prostaglandin E1 (PGE1). Cyclic AMP levels are elevated 70–80% and 30–40% throughout the 48-h treatment with RO 20-1724 and PGE1, respectively. Carbachol does not affect either basal TH activity or cyclic AMP levels in the cells. However, the cholinergic agonist delays the induction of TH elicited by either RO 20-1724 or PGE1. This delay is prevented by atropine. The elevation in cyclic AMP levels elicited by either RO 20-1724 or PGE1 is blocked for 1 h or 15 min. respectively, after treatment with carbachol. Cyclic AMP levels then begin to rise until they reach those levels observed in the presence of RO 20-1724 or PGE1 alone by 12 h or 1 h of treatment, respectively. Time course studies demonstrate that this transient inhibition of the elevation of cyclic AMP is associated with a 48-h delay in the induction of TH elicited by either RO 20-1724 or PGE1. In contrast, the induction elicited by 8-bromo cyclic AMP is unaffected by carbachol. A depolarizing concentration (56 mM) of KCl produces a 24-h delay in the induction of TH elicited by RO 20-1724, without affecting the concomitant elevation of cyclic AMP produced by the PDE inhibitor. Furthermore, 56 mM-KCl inhibits the induction of TH elicited by 8-bromo cyclic AMP. It thus appears that carbachol delays the induction of TH by transiently inhibiting the elevation of cyclic AMP, whereas potassium depolarization delays the induction of TH by inhibiting a process with a site of action that is distal to the elevation of cyclic AMP.  相似文献   

3.
《Life sciences》1996,59(16):PL255-PL261
The effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type IV inhibitors and of the cell permeable analogue of cAMP, db-cAMP, were investigated on fMLP-induced arachidonate release from human monocytes. When monocytes were preincubated with the combined PKA/PKG inhibitor H8 (10−6 to 10−4 M) or the selective PKG inhibitor Rp-8-cpt-cGMPs (10−6 to 10−4 M) a concentration-dependent reduction of the inhibitory effect of db-cAMP (10 M), rolipram (10−5 M) and Ro 20-1724 (10−5 M) was noted. When monocytes were preincubated with the selective PKA inhibitor H89 (10−6 to 10−4 M), only a small inhibition of the effect of db-cAMP and no inhibition of the effects of rolipram and Ro 20–1724 were observed. The present data indicate that db-cAMP and PDE IV inhibitors elicit an in vitro anti-inflammatory activity by a PKA-independent mechanism, which do not appear to be mainly mediated via the PKG activation.  相似文献   

4.
5.
Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.  相似文献   

6.
We investigated the effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type 4 inhibitors and of the cell permeable analogue of cAMP, db-cAMP on LPS-induced TNF-alpha release from human mononuclear cells. Incubation from 30 min of mononuclear cells with dbcAMP (10(-5) to 10(-3) M), rolipram (10(-9) M to 10(-5) M) or Ro 20-1724 (10(-9) M to 10(-5) M) significantly inhibited LPS-induced TNF-alpha release. When mononuclear cells were preincubated for 30 min with the selective PKA inhibitor, H89 (10(-4) M), but not with the selective PKG inhibitor, Rp-8-pCPT-cGMPs (10(-4) M), a significant reduction of the inhibitory effect of db-cAMP was noted. Thirty min incubation of mononuclear cells with Rp-8-pCPT-cGMPs induced a significant reduction of the inhibitory activities of both rolipram and Ro 20-1724 (10(-9) to 10(-5) M) on LPS-induced TNF-alpha release, whereas H89 elicited a moderate, but significant inhibition. The present data indicate that db-cAMP inhibits TNF-alpha release from human mononuclear cells through a PKA-dependent mechanism. In contrast, PDE 4 inhibitors elicit their in vitro anti-inflammatory activities via a PKG-dependent rather than PKA-dependent activation.  相似文献   

7.
The increasing number of eosinophils into bronchoaelvolar space is observed during noninfectious inflammatory lung diseases. Eotaxins (eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26) are the strongest chemotactic agents for eosinophils. Inhibitors of phosphodiesterase 4 (PDE4), the enzyme decomposing cAMP, are anti-inflammatory agents which act through cAMP elevation and inhibit numerous steps of allergic inflammation. The effect of PDE4 inhibitors on eotaxin expression is not known in details. The aim of our study was to evaluate the influence of PDE4 inhibitors: rolipram and RO-20-1724 on expression of eotaxins in bronchial epithelial cell line BEAS-2B. Cells were preincubated with PDE4 inhibitors or dexamethasone for 1 hour and then stimulated with IL-4 or IL-13 alone or in combination with TNF-α. After 48 hours eotaxin protein level was measured by ELISA and mRNA level by real time PCR. Results: PDE4 inhibitors decreased CCL11 and CCL26 expression only in cultures co-stimulated with TNF-α. In cultures stimulated with IL-4 and TNF-α rolipram and RO-20-1724 diminished CCL11 mRNA expression by 34 and 37%, respectively, and CCL26 by 43 and 47%. In cultures stimulated with IL-13 and TNF-α rolipram and RO-20-1724 decreased expression of both eotaxins by about 50%. These results were confirmed at the protein level. The effect of PDE4 inhibitors on eotaxin expression in BEAS-2B cells, in our experimental conditions, depends on TNF-α contribution.  相似文献   

8.
Effects of inhibitors of phosphodiesterases (PDE) on bursting activity, produced by d-amphetamine (d-AM) was studied in PPa4 neurons of the giant African snail Achatina fulica F. Action of the following PDE inhibitors was analyzed: vinpocetine (selective to PDE I), erythro-9-(2-hydroxi-3-nonyl) adenine (EHNA; selective to PDE 2), milrinone (selective to PDE 3), rolipram (selective to PDE 4), sildenafil citrate (Viagra@; selective to PDE 5), and caffeine, a non-selective phosphodiesterase inhibitor. Amphetamine at a low concentration (67.5 × 10?5 M) did not produce the bursting firing in the neurons; however, the convulsive activity appeared on addition to this solution of any if the PDE inhibitors except for sildenafil. Forskolin (an adenylyl cyclase activator, 10?4 M) also decreased the neuronal threshold to the d-AM action. The bursting activity produced by d-AM did not develop after a previous administration of the protein kinase A inhibitor KT-5720. The phospholipase C blocker U73122 had no effect on the bursting activity produced by d-AM. It is concluded that the neuronal convulsive activity induced by d-AM is associated with the phosphodiesterase activity.  相似文献   

9.
AimsAdhesion formation following abdominal intervention is an abnormal peritoneal healing process. Our aim was to investigate the effects of controlling adhesion development by inhibiting its key components (angiogenesis, inflammation and fibrosis) using phosphodiesterase (PDE) inhibitors.Main methodsTwo PDE inhibitors including cilostazol a PDE3 inhibitor (40 and 400 mg/kg), and pentoxifylline (PTX), a PDE 1–5 inhibitor (50 and 500 mg/kg) were used for a period of 7 days to inhibit angiogenesis, inflammation, and fibrosis in a murine model of sponge-induced peritoneal adhesion. Angiogenesis was assessed by hemoglobin content, vascular endothelial growth factor (VEGF) levels, and morphometric analysis. Accumulation of neutrophils and macrophages was determined by measuring myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) activities, respectively. Levels of TNF-α were also determined. Fibrosis was assessed by determining the amount of collagen in the implant; TGF-β1 levels in the implant were also measured.Key findingsOur results show that the treatments attenuated the main components of the adhesion tissue by reducing the amount of fibrovascular tissue that infiltrated the sponge matrix (wet weight). Hemoglobin content and VEGF levels were also decreased by approximately 40%. Neutrophil accumulation was unaffected by the compounds. However, NAG activity was reduced by pentoxifylline, but not by cilostazol. These compounds also decreased the levels of the pro-inflammatory and pro-fibrogenic cytokines TNF-α and TGF-β1, respectively, and collagen synthesis.SignificanceOur results suggest that cilostazol and PTX decreased the development of peritoneal adhesions in the model, which might be associated with cyclic nucleotide modulation. Therapies to intervene in these pathways may be beneficial for the prevention of these lesions.  相似文献   

10.
The aim of the present study was to compare the effects of selective phosphodiesterase (PDE) 3, 4 and 5 inhibitors on antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. When the sensitized guinea-pigs were orally pre-treated with the selective PDE4 inhibitor, Ro 20-1724 (30 mg/kg), and studied 48h after OA, a significant reduction (P<0.01) of the leftward shift of the dose-response curve to ACh was noted, whereas it was ineffective at the lower dose (10 mg/kg). Administration of the selective PDE3 inhibitor, milrinone (30 mg/kg) also elicited a significant reduction (P<0.01) of the airway hyperresponsiveness, whereas the PDE5 inhibitor zaprinast (30 mg/kg) was ineffective. These results show that both PDE3 and PDE4 inhibitors are able to inhibit the antigen-induced airway hyperresponsiveness in sensitized guinea-pigs and support the potential utility of selective PDE inhibitors in the treatment of asthma.  相似文献   

11.
In adipocytes, phosphorylation and activation of PDE3B is a key event in the antilipolytic action of insulin. The role of PDE4, another PDE present in adipocytes, is not yet known. In this work we investigate the role of PDE3B and PDE4 in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis. Inhibition of PDE3 (OPC3911, milrinone) but not PDE4 (RO 20-1724) lowered insulin-induced glucose uptake and lipogenesis, especially in the presence of isoproterenol (a general beta-adrenergic agonist), CL316243, a selective beta3-adrenergic agonist, and pituitary adenylate cyclase-activating peptide. The inhibitory effect of OPC3911 was associated with reduced translocation of GLUT-4 from the cytosol to the plasma membrane. Both OPC3911 and RO 20-1724 increased protein kinase A (PKA) activity and lipolysis. H89, a PKA inhibitor, did not affect OPC3911-mediated inhibition of insulin-induced glucose uptake and lipogenesis, whereas 8-pCPT-2'-O-Me-cAMP, an Epac agonist which mediates PKA independent cAMP signaling events, mimicked all the effects of OPC3911. Insulin-mediated activation of protein kinase B, a kinase involved in insulin-induced glucose uptake, was apparently not altered by OPC3911. In summary, our data suggest that PDE3B, but not PDE4, contributes to the regulation of insulin-induced glucose uptake, GLUT-4 translocation, and lipogenesis presumably by regulation of a cAMP/Epac signalling mechanisms.  相似文献   

12.
Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor.  相似文献   

13.
BackgroundEndothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke.MethodWe performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors.ResultsWe found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects.ConclusionThis review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.  相似文献   

14.
We have demonstrated that confluent monolayers of the mouse fibroblast cell line C3H/10T1/2 (10T1/2) have the ability to cause reversible growth inhibition of cocultured transformed cells. This was first demonstrated for de novo transformed cells and later extended to established cell lines of proven oncogenicity in vivo. This growth inhibition could be increased by growing the 10T1/2 cells to high density in increasing concentrations of serum or by elevating intracellular concentrations of cAMP using inhibitors of phosphodiesterase (PDE). These manipulations, which in cocultures of nontransformed and transformed cells caused complete inhibition of tumor cell growth, had no effect on growth rate or saturation density of either ceil type when cultured alone, demonstrating the cooperative nature of this phenomenon. This cooperation could not be produced by transfer of culture medium, demonstrating the requirement for intimate cell contact. Inhibition of the formation of transformed foci of cells in these mixed cultures was accompanied by a decrease in the incorporation of labeled thymidine into these cultures; the kinetics of this inhibition and recovery suggested a rapidly reversible effect on cell cycle transit times. The potent inhibitor of cAMP PDE, Ro 20-1724 induced dose dependent increases in intracellular cAMP in both nontransformed and in transformed cells. However, at a concentration of 10?4 M Ro 20-1724, which inhibited tumor cell growth in mixed cultures, cAMP was elevated 30-fold in nontransformed versus only 3-fold in transformed cells. The inhibitory effects of PDE inhibitors on tumor growth have been extended to an in vivo model system, utilizing Lewis lung carcinoma cells growing as metastases in the lungs of C57B1 mice. In these mice, inoculated intravenously with a single cell suspension of Lewis lung cells, the formation of lung metastases was dramatically decreased by the twice daily administration of either isobutylmethylxanthine or Ro 20-1724; PDE inhibitors were shown to be active in vitro. The latter compound, which showed highest activity in vitro, was also substantially more potent in vivo as an inhibitor of lung tumor colony formation and doubled the life span of the tumor bearing animals. Cell cycle analysis of lung tumor colonies by the labeled mitosis method showed that both phosphodiesterase inhibitors caused a prolonged G1 phase in the cell cycle but failed to influence other phases. Although detailed analysis of host tissues is not complete, prolonged treatment with these drugs caused no statistically significant weight loss or changes in counts of red or white blood cells indicating a selective growth inhibition of transformed cells at these doses. Studies to determine the mechanism of the cellular communication and the nature of the signal are in progress.  相似文献   

15.
Several compounds have been tested for their activity as inhibitors of 3′,5′-nucleotide phosphodiesterase in brain cortical slices from guinea pig. SQ 20,009 (1-ethyl-4-isopropylidenehydrazino)-1H-pyrazolo (3,4-b)pyridine-5-carboxylate, ethylester, hydrochloride), a very potent inhibitor of 3′,5′-nucleotide phosphodiesterase from rat and rabbit brain shows only moderate activity as 3′,5′-nucleotide phosphodiesterase inhibitor when tested in brain slices. It enhances cyclic AMP accumulation only when slices are stimulated by histamine. It does not affect cyclic AMP levels when histamine/norepinephrine are used as stimuli of cyclic AMP formation and decreases the activity of adenosine as stimulant slightly. Ro 20–1724 (4-(3-butoxy-4-methoxy)-2-imidazolidinone) a potent inhibitor of canine cerebral cortex PDE activity effectively augments the increase in cyclic AMP under all stimulating conditions mentioned, as does to a somewhat smaller extent the more water soluble Ro 20–2926 (4-(3-ethoxy-ethoxy-4-methoxy)-2-imidazolidinone). Dose-response curves for Ro 20–1724 under three stimulating conditions of increased cyclic AMP formation (0.1 mm histamine, 0.1 mm histamine/0.1 mm norepinephrine, 0.1 mm adenosine) yield an ED50 of about 20 μm in all instances. A significant increase over respective controls is seen even at 1 μm Ro 20–1724 (histamine/norepinephrine). The drugs may be useful as tools for studying the regulation of cyclic AMP levels in the central nervous system.  相似文献   

16.
Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.  相似文献   

17.
In an earlier study, theophylline was shown to antagonize the morphine-induced inhibition of electrically induced contractions of the longitudinal muscle-myenteric plexus preparation from the guinea pig ileum. In the present study, acetylcholine (ACh) released from the myenteric plexus was measured directly using a radioenzymatic assay. Theophylline antagonized the morphine-induced inhibiton of ACh release. A similar antagonism was also observed with caffeine and 3-isobutyl-l-methylxanthine (IBMX). All three methylxanthines also increased ACh release. The nonxanthine phosphodiesterase (PDE) inhibitors 4-(3-butoxy-4-methoxy)-2-imidazolidinone (Ro 20-1724) and l-ethyl-4-isopropylidenehydrazino-1 H-pyrozolo(3,4-b)-pyridine-5-carboxylate, ethylester, HCl (SQ 20,009) generally did not antagonize the morphine-induced inhibiton of ACh release. The PDE inhibitor SQ 20,009 but not Ro 20-1724, enhanced the release of ACh. Both high calcium concentration and the divalent cation ionophore A23187 antagonized the inhibitory action of morphine on ACh release. These observations suggest that alteration in calcium fluxes rather than the inhibiton of PDE mediate the methylxanthine-induced antagonism of morphine in this preparation.  相似文献   

18.
Prostaglandin E1 and a cAMP phosphodiesterase inhibitor 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone, RO20-1724, were used to induce differentiation in mouse neuroblastoma cells in culture. The incorporation of amino acids and phosphate into nuclear proteins of control and drug-treated cells (1 h and 3 days after treatment) was examined using double radioisotopic techniques. A marked decrease in histone synthesis and H1-histone phosphorylation were observed in ‘differentiated’ neuroblastoma cells after 3 days of prostaglandin E1 and RO20-1724 treatment, but only small differences were noted in the synthesis and phosphorylation of non-histone chromatin associated proteins after 3 days of drug treatment. Minimal changes were observed in the labeling of histone and non-histone nuclear proteins if the cells were treated for 1 h with prostaglandin E1 and RO20-1724.  相似文献   

19.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2′,5′-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

20.
Cultured rat aortic vascular smooth muscle cells (VSMC) express both cGMP- inhibited cAMP phosphodiesterase (PDE-3) and Ro,20-1724-inhibited cAMP phosphodiesterase (PDE-4) activities. Utilizing a PDE-3-selective inhibitor (cilostamide) and a PDE-4-selective inhibitor (Ro,20-1724), PDE-3 and PDE-4 activities were shown to account for 15 and 55% of total VSMC cAMP phosphodiesterase (PDE) activity. Incubations of VSMC with either forskolin or 8-bromo-cAMP caused a concentration- and time-dependent increase in total cellular cAMP PDE activity. In these cells, both PDE-3 and PDE-4 activities were increased, with a relatively larger effect observed on PDE-3 activity. Similar incubations with an activator of soluble guanylyl cyclase (sodium nitroprusside) or with 8-bromo-cGMP did not increase cAMP PDE activity. cAMP-induced increases in cAMP PDE activity were inhibited with actinomycin D or cycloheximide, demonstrating that new mRNA and protein synthesis were required. We conclude that VSMC cAMP PDE activity is elevated following long-term elevation of cAMP, and that increases in PDE-3 and PDE-4 activities account for more than 70% of this increase. These results may have implications for long-term use of cAMP PDE inhibitors as therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号