首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial chemiluminescent reagents emit across a broad portion of the electromagnetic spectrum (400–500 nm). A challenge to the use of chemiluminescence to monitor biological processes is the presence of interfering substances in the biological optical window. In the present study, longer wavelength emitting fluorophores (the organic dyes Alexa 568 and Alexa 647), and a semiconductor nanoparticle (QDOT800) were used to red‐shift the emission from commercially available 1,2‐dioxetane‐based chemiluminescent substrate reactions. By adding non‐conjugated fluorescent emitters into chemiluminescent reaction mixtures, an emission peak occurred at the predicted wavelength of the fluorescent emitter. The excitation and emission from QDOT800 was preserved in the presence of a 100 µm‐thick glass barrier separating it from the chemiluminescent reaction components. The maximum tissue phantom penetration by QDOT800 emission was 8.5 mm; in comparison, the native chemiluminescent emission at 500 nm was unable to penetrate the thinnest tissue phantom of 2.5 mm. The described method for red‐shifted emissions from chemiluminescent reactions does not require direct interaction between the chemiluminescent reaction and the fluorescent emitters. This suggests that the mechanism of chemiluminescent excitation of fluorophores and QDOT800 is not exclusive to chemiluminescence resonance energy transfer or sensitized chemiluminescence, but rather by broad energization from the native chemiluminescent emission. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Wavelength-selective fluorescence comprises a set of approaches based on the red edge effect in fluorescence spectroscopy which can be used to directly monitor the environment and dynamics around a fluorophore in a complex biological system. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption band, is termed red edge excitation shift (REES). This effect is mostly observed with polar fluorophores in motionally restricted media such as very viscous solutions or condensed phases where the dipolar relaxation time for the solvent shell around a fluorophore is comparable to or longer than its fluorescence lifetime. REES arises from slow rates of solvent relaxation (reorientation) around an excited state fluorophore which is a function of the motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. Utilizing this approach, it becomes possible to probe the mobility parameters of the environment itself (which is represented by the relaxing solvent molecules) using the fluorophore merely as a reporter group. Further, since the ubiquitous solvent for biological systems is water, the information obtained in such cases will come from the otherwise 'optically silent' water molecules. This makes REES and related techniques extremely useful since hydration plays a crucial modulatory role in a large number of important cellular events, including lipid-protein interactions and ion transport. The interfacial region in membranes, characterized by unique motional and dielectric characteristics, represents an appropriate environment for displaying wavelength-selective fluorescence effects. The application of REES and related techniques (wavelength-selective fluorescence approach) as a powerful tool to monitor the organization and dynamics of probes and peptides bound to membranes, micelles, and reverse micelles is discussed.  相似文献   

3.
Polymer dots (PDs) showing concentration‐mediated multicolor fluorescence were first prepared from sulfuric acid‐treated dehydration of Pluronic® F‐127 in a single step. Pluronic‐based PDs (P‐PDs) showed high dispersion stability in solvent media and exhibited a fluorescence emission that was widely tunable from red to blue by adjusting both the excitation wavelengths and the P‐PD concentration in an aqueous solution. This unique fluorescence behavior of P‐PDs might be a result of cross‐talk in the fluorophores of the poly(propylene glycol)‐rich core inside the P‐PD through either energy transfer or charge transfer. Reconstruction of the surface energy traps of the P‐PDs mediated through aggregation may lead to a new generation of carbon‐based nanomaterials possessing a fluorescence emission and tunable by adjusting the concentration. These structures may be useful in the design of multifunctional carbon nanomaterials with tunable emission properties according to a variety of internal or external stimuli. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump‐probe spectroscopy at room temperature. Difference (Alight ? Adark) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750‐nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.  相似文献   

5.
The absorption and energy transfer properties of photosynthetic pigments are strongly influenced by their local environment or “site.” Local electrostatic fields vary in time with protein and chromophore molecular movement and thus transiently influence the excited state transition properties of individual chromophores. Site-specific information is experimentally inaccessible in many light-harvesting pigment–proteins due to multiple chromophores with overlapping spectra. Full quantum mechanical calculations of each chromophores excited state properties are too computationally demanding to efficiently calculate the changing excitation energies along a molecular dynamics trajectory in a pigment–protein complex. A simplified calculation of electrostatic interactions with each chromophores ground to excited state transition, the so-called charge density coupling (CDC) for site energy, CDC, has previously been developed to address this problem. We compared CDC to more rigorous quantum chemical calculations to determine its accuracy in computing excited state energy shifts and their fluctuations within a molecular dynamics simulation of the bacteriochlorophyll containing light-harvesting Fenna–Mathews–Olson (FMO) protein. In most cases CDC calculations differed from quantum mechanical (QM) calculations in predicting both excited state energy and its fluctuations. The discrepancies arose from the inability of CDC to account for the differing effects of charge on ground and excited state electron orbitals. Results of our study show that QM calculations are indispensible for site energy computations and the quantification of contributions from different parts of the system to the overall site energy shift. We suggest an extension of QM/MM methodology of site energy shift calculations capable of accounting for long-range electrostatic potential contributions from the whole system, including solvent and ions.  相似文献   

6.
BackgroundFörster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.MethodsWe demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.ResultspEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.ConclusionsFRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.General significanceShows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.  相似文献   

7.
Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250-500 fs, 1.5-2.5 ps, and 20-30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20-30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer to the chlorophylls absorbing around 695-700 nm, presumably reaction center pigments. The 1.5-2.5 ps phases of downhill and uphill energy transfer are largely equivalent but opposite in direction, indicating energy equilibration between bulk antenna chlorophylls at 685 nm and spectral forms absorbing below 700 nm. Transient absorption spectra with excitation at 693 nm exhibit spectral evolution within approximately 2 ps of uphill energy transfer to major spectral forms at 680 nm and downhill energy transfer to red pigments at 705 nm. The 20-30 ps trapping component and P(700) photooxidation spectra derived from data on the 100 ps scale are largely excitation wavelength independent. An additional decay component of red pigments at 710 nm can be induced either by selective excitation of red pigments or by decreasing the temperature to 264 K. This component may represent one of the phases of energy transfer from inhomogeneously broadened red pigments to P(700). The data are discussed based on the available structural model of the photosystem I reaction center and its core antenna.  相似文献   

8.
Imaging of fluorescence resonance energy transfer (FRET) between suitable fluorophores is increasingly being used to study cellular processes with high spatiotemporal resolution. The genetically encoded Cyan (CFP) and Yellow (YFP) variants of Green Fluorescent Protein have become the most popular donor and acceptor pair in cell biology. FRET between these fluorophores can be imaged by detecting sensitized emission. This technique, for which CFP is excited and transfer is detected as emission of YFP, is sensitive, fast, and straightforward, provided that proper corrections are made. In this study, the detection of sensitized emission between CFP and YFP by confocal microscopy is optimized. It is shown that this FRET pair is best excited at 430 nm. We identify major sources of error and variability in confocal FRET acquisition including chromatic aberrations and instability of the excitation sources. We demonstrate that a novel correction algorithm that employs online corrective measurements yields reliable estimates of FRET efficiency, and it is also shown how the effect of other error sources can be minimized.  相似文献   

9.
Fluorescence homotransfer (electronic energy transfer between identical fluorophores) has the potential to quantitate the number of subunits in membrane protein oligomers. Homotransfer strongly depolarizes fluorescence emission as a result of intermolecular excitation energy exchange between an initially excited, oriented molecule and a randomly oriented neighbor. We have theoretically treated fluorescein labeled subunits in an oligomer as a cluster of molecules that can exchange excitation energy back and forth among the subunits within that group. We find that the larger the number of subunits, the more depolarized is the emission. The general equations to calculate the expected anisotropy for complexes composed of varying numbers of labeled subunits are presented. Self-quenching of fluorophores, orientation, and changes in lifetime are also discussed and/or considered. To test this theory, we have specifically labeled melittin on its N-terminal with fluorescein and monitored its monomer to tetramer equilibrium both in solution and in lipid bilayers. The calculated anisotropies are close to the experimental values when non-fluorescent fluorescein dimers are taken into account. Our results show that homotransfer may be a promising method to study membrane-protein oligomerization.  相似文献   

10.
Wavelength-shifting molecular beacons   总被引:14,自引:0,他引:14  
We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce-not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.  相似文献   

11.
Jana S  Dalapati S  Ghosh S  Guchhait N 《Biopolymers》2012,97(10):766-777
The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.  相似文献   

12.
We have examined the interaction of the nicotinic acetylcholine receptor with decidium diiodide, a bisquaternary analogue of ethidium containing 10 methylene groups between the endocyclic and trimethylamino quaternary nitrogens. Decidium inhibits mono-[125I]iodo-alpha-toxin binding, inhibits agonist-elicited 22Na+ influx in intact cells, augments agonist competition with mono-[125I]iodo-alpha-toxin binding, and enhances [3H]phencyclidine (PCP) binding to a noncompetitive inhibitor site. These effects occur over similar concentration ranges (half-maximum effects between 0.1 and 0.4 microM). Thus, decidium binds to the agonist site and converts the receptor to a desensitized state exhibiting increased affinity for agonist and heterotropic inhibitors. These properties are similar to metaphilic antagonists characterized in classical pharmacology. At higher concentrations decidium associates directly with the noncompetitive inhibitor site identified by [3H]phencyclidine binding. Dissociation constants of decidium at this site in the resting and desensitized states are determined to be 29 and 1.2 microM, respectively. Analysis of fluorescence excitation and emission maxima reveal that binding to both the agonist and noncompetitive inhibitor sites is associated with approximately 2-fold enhancement of fluorescence. The excitation maximum for decidium bound at the agonist site appears at 490 nm while that for decidium bound at the noncompetitive inhibitor site appears at 530 compared to 480 nm in buffer. These results suggest that decidium experiences a more hydrophobic environment upon binding to the nicotinic acetylcholine receptor sites, particularly to the noncompetitive inhibitor site. Fluorescence energy transfer between N'-fluorescein isothiocyanate-lysine-23 alpha-toxin (FITC-toxin), and decidium is not detected when each is bound to one of the two agonist sites on the receptor. This allows a minimal distance to be estimated between fluorophores. In contrast, energy transfer is observed between decidium nonspecifically associated with the membrane or with nonspecific sites and the FITC-toxin at the agonist sites.  相似文献   

13.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) has become a major tool for the static and dynamic study of conformational changes in biological systems. We report herein the investigation of a switchable pyridine-pyrimidine-pyridine scaffold as a support to ion-controlled intramolecular FRET. A dissymmetrical switch bearing naphthalene and acridine fluorophores was synthesized and its photophysical behavior studied. In the neutral state where the molecule adopts a U-shape, the emission of the naphthalene is quenched while a strong emission from the acridine fluorophore is observed, consistent with energy transfer between the naphthalene and the acridine units. The emission of the acridine is also enhanced by the pyridine-induced sensitization (excitation at 280 nm). After introduction of a copper(I) cation which switches the conformation to a W-shape, the complex formed shows the emission of both the naphthalene and acridine units when excited at 280 nm, although coordination also leads to a strong quenching of emission.  相似文献   

15.
16.
The structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus has been recently resolved by x-ray crystallography to 2.5-A resolution. Besides the reaction center, photosystem I consists also of a core antenna containing 90 chlorophyll and 22 carotenoid molecules. It is their function to harvest solar energy and to transfer this energy to the reaction center (RC) where the excitation energy is converted into a charge separated state. Methods of steady-state optical spectroscopy such as absorption, linear, and circular dichroism have been applied to obtain information on the spectral properties of the complex, whereas transient absorption and fluorescence studies reported in the literature provide information on the dynamics of the excitation energy transfer. On the basis of the structure, the spectral properties and the energy transfer kinetics are simultaneously modeled by application of excitonic coupling theory to reveal relationships between structure and function. A spectral assignment of the 96 chlorophylls is suggested that allows us to reproduce both optical spectra and transfer and emission spectra and lifetimes of the photosystem I complex from S. elongatus. The model calculation allowed to study the influence of the following parameters on the excited state dynamics: the orientation factor, the heterogeneous site energies, the modifications arising from excitonic coupling (redistribution of oscillator strength, energetic splitting, reorientation of transition dipoles), and presence or absence of the linker cluster chlorophylls between antenna and reaction center. For the F?rster radius and the intrinsic primary charge separation rate, the following values have been obtained: R(0) = 7.8 nm and k(CS) = 0.9 ps(-1). Variations of these parameters indicate that the excited state dynamics is neither pure trap limited, nor pure transfer (to-the-trap) limited but seems to be rather balanced.  相似文献   

17.
In this work, fluorescence lifetime imaging microscopy in the time domain was used to study the fluorescence dynamics of ECFP and of the ratiometric chloride sensor Clomeleon along neuronal development. The multiexponential analysis of fluorophores combined with the study of the contributions of the individual lifetimes (decay-associated spectra) was used to discriminate the presence of energy transfer from other excited state reactions. A characteristic change of sign of the pre-exponential factors of lifetimes from positive to negative near the acceptor emission maxima was observed in presence of energy transfer. By fluorescence lifetime imaging microscopy, we could show that the individual conformations of CFP display differential quenching properties depending on their microenvironment. Suitability of Clomeleon as an optical indicator to obtain a direct readout of the intracellular chloride concentrations in living cells was verified by steady-state and time-resolved spectroscopy. The simultaneous study of the photophysical properties of Clomeleon, the calcium indicator Cameleon, and ECFP with neuronal development provided a kinetic model for the mechanism when competitive quenching effects as well as energy transfer occur in the same molecule. Simultaneous analysis of donor and acceptor kinetics was necessary to discriminate F?rsters resonance energy transfer along neuronal development due to the different cellular effects involved.  相似文献   

18.
The fluorescence spectra of 2-(p-toluidinylnaphthalene)-6-sulfonate associated with β-lactoglobulin, β-casein. and bovine and human serum albumins are shown to depend on excitation wavelength. A long-wave shift of the spectra is observed at the long-wave edge excitation, reaching 10 nm and above. A similar phenomenon is found in glucose glass and in glycerol at + 1°C, i.e., in systems with delayed dipolar solvent relaxation, but not in liquid solutions. This phenomenon is proposed to be based on relaxation processes in the excited state. There exists a distribution of chromophore microstates with different interactions with surrounding groups which results in heterogeneous broadening of the electronic spectra and allows photoselection of a part of this distribution, being characterized by a low transition energy. The fast structural relaxation results in an altered distribution and, if this is the case, the effect of edge excitation of fluorescence spectra is not observed. If the structural relaxation during the excited state lifetime is absent, this effect is maximal. This interpretation is in agreement with results on the influence of red edge excitation on the low-temperature fluorescence spectra of dyes and with the data on time-resolved nanosecond fluorescence spectroscopy. The results of this work strongly support the significant dye fluorescence spectral shifts on protein binding, being determined not only by polarity changes in their environment, but also by relaxation properties of protein groups in this environment. These results also indicate that on the nanosecond time scale, the structural relaxation around the excited chromophore in proteins may be incomplete.  相似文献   

19.
Plasmonics in Biology and Plasmon-Controlled Fluorescence   总被引:3,自引:0,他引:3  
Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow design of structures that enhance emission at specific wavelengths and the creation of new devices that control and transport the energy from excited fluorophores in the form of plasmons, and then convert the plasmons back to light. Finally, it appears possible that the use of PCF will allow construction of wide-field optical microscopy with subwavelength spatial resolution down to 25 nm.  相似文献   

20.
Phosphorescence from the triplet probe erythrosin B provides spectroscopic characteristics such as emission energy and lifetime that are specifically sensitive to molecular mobility of the local environment. This study used phosphorescence of erythrosin B to investigate how variation in NaCl content modulated the mobility of the amorphous sucrose matrix over the temperature range from 5 to 100 degrees C. Addition of NaCl increased the emission energy and the energy difference with excitation at the absorption maximum and the red edge, and increased the lifetime by reducing the non-radiative decay rate in the glass as well as in the undercooled liquid in a concentration dependent manner, indicating that NaCl decreased the matrix molecular mobility. Emission energy and lifetime increased with increasing NaCl content up to a maximum at NaCl/sucrose mole ratio of approximately 0.5; above 0.5 mole ratio, the effect of NaCl was less significant and appeared to be opposed by increasing plasticization by residual water. Changes in the width of the distribution of the emission energy and lifetime and variation in the lifetime with excitation and emission wavelength indicated that NaCl increased the spectral heterogeneity and thus increased the extent of dynamic site heterogeneity. These results are consistent with a physical model in which sodium and chloride ions interact with sucrose OH by ion-dipole interactions, forming clusters of less mobile molecules within the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号