首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
胆汁酸是一类胆固醇的代谢物,在机体胆固醇与能量代谢平衡和小肠营养物质吸收等方面起着重要作用。肝脏是合成胆汁酸的主要场所。饥饿条件下,胆汁酸从肝脏分泌进入胆管并被储存到胆囊;进食后胆囊收缩,贮存的胆汁酸被排出进入小肠。在小肠中,95%的胆汁酸会被小肠重新吸收,通过肝门静脉返回肝脏,这一过程被称为胆汁酸的肝肠循环。胆汁酸一方面作为乳化剂促进小肠中脂类等物质的吸收及转运,同时也作为重要的信号分子与多种受体结合,包括核受体法呢醇X受体(farnesoidXreceptor,FXR)、维生素D受体(vitaminD receptor,VDR)、孕烷X受体(pregnaneXreceptor,PXR)以及细胞膜表面受体G蛋白偶联受体(cellmembrane surface receptor-G protein coupled receptor, TGR5)等,在调节体内胆汁酸的代谢平衡、糖脂代谢与能量代谢平衡等方面发挥重要作用。肝细胞生长因子(hepatocyte growth factor, HGF)、白介素1-(interleukin-1, IL-1)及肿瘤坏死因子(tumor necrosis factor, TNF-)等协同作用构成了胆汁酸合成的精密调控网络。本文主要综述了胆汁酸的合成调控及其功能方面的最新研究进展,旨在为胆汁酸代谢相关研究提供参考。  相似文献   

2.
肠道菌群是胃肠道的多种共生细菌和其他微生物的统称,是一个复杂而动态的微生物生态系统,有数十万亿个微生物。胆汁酸是胆汁的主要成分,由肝脏中的胆固醇合成并释放到肠道中以帮助消化吸收膳食脂肪。肠道菌群在胆汁酸代谢中发挥着重要作用,它借助胆盐水解酶和类固醇脱氢酶等通过脱氢、脱羟基和脱硫等作用改变胆汁酸池的组成;随后通过影响胆汁酸受体(如法尼醇X受体)再反馈调节胆汁酸代谢。此外胆汁酸可通过破坏细菌细胞膜和损伤DNA等抑制细菌的生长而直接改变肠道菌群结构,也可通过其受体间接改变肠道菌群结构。越来越多的研究揭示了肝脏胆汁酸和肠道菌群在调节宿主健康和疾病中的相互作用。因此,了解肠道菌群和胆汁酸代谢之间的相互作用对维持宿主健康具有重要意义。本文就胆汁酸的基本代谢过程以及其与肠道菌群的相互作用作一综述。  相似文献   

3.
动物宿主——肠道微生物代谢轴研究进展   总被引:6,自引:1,他引:5  
皮宇  高侃  朱伟云 《微生物学报》2017,57(2):161-169
肠道中栖息着数量庞大且复杂多样的微生物菌群,在维持宿主肠道微环境稳态中发挥重要作用。微生物菌群可以利用宿主肠道的营养素,发酵产生代谢产物,与宿主机体形成宿主—微生物代谢轴(host-microbe metabolic axis)。该代谢轴既能影响营养素吸收和能量代谢,又可调控宿主各项生理过程。本文主要阐述宿主-肠道微生物代谢轴的概念、肠-肝轴、肠-脑轴、肠道微生物与宿主肠道代谢轴的互作以及对机体健康的影响。  相似文献   

4.
人体肠道内寄生着大量的肠道菌群,它们参与机体多种生命活动,其紊乱被认为与多种疾病密切相关。肝与肠道之间存在着特殊的解剖位置关系,二者相互作用,相互影响。肠道菌群通过肠-肝轴参与一系列生理病理反应,最终影响慢性肝疾病的发展。目前,有众多学者对肠道菌群在肝疾病中的作用进行了研究,但涉及其中具体的机制尚未探明。本文就肠道菌群通过参与Toll样受体(TLRs)活化加重肝纤维化;胆汁酸代谢调控非酒精性脂肪性肝病(NAFLD);T细胞分化改善酒精性肝病(ALD);活性氧簇(ROS)生成影响肝癌(HCC)发展中的具体分子机制做一综述。  相似文献   

5.
肠道微生物与胆汁酸代谢密切相关,肠道微生物参与了胆汁酸在肠道中的修饰过程;肠道微生物通过法尼醇受体影响胆汁酸的合成;肠道微生物通过调节胆汁酸的代谢影响机体健康,反过来胆汁酸也可以通过调节肠道微生物菌群的组成影响机体健康。肠道微生物与胆汁酸代谢间的稳态影响着机体健康,现对肠道微生物与胆汁酸代谢及其相互影响做一综述。  相似文献   

6.
胆汁酸作为一种信号分子通过激活肝、肠道和外周组织中的胆汁酸受体影响体内葡萄糖和脂质的代谢平衡,对于调节肥胖、2型糖尿病和非酒精性脂肪肝等代谢性疾病具有非常重要的意义。胆汁酸与相应核受体,如法尼醇X受体(farnesoid X receptor, FXR)和Takeda G蛋白偶联受体5 (Takeda G protein-coupled receptor 5,TGR5)的相互作用影响了这些代谢性疾病。FXR主要通过影响胆汁酸的合成及转运对非酒精性脂肪肝发挥作用,TGR5则是间接增加褐色脂肪组织中的生热作用,改善肥胖和2型糖尿病。这些调控机制的研究是非常必要的。本文综述了胆汁酸代谢及其对代谢性疾病调控的分子机制的研究进展,以期为科研工作者提供一定的参考。  相似文献   

7.
法尼醇X受体(farnesoid X receptor,FXR)是核受体超家族的重要成员,以作为胆汁酸受体被大家所熟知.除了调节胆汁酸的合成和转运,FXR在调控葡萄糖代谢、甘油三酯代谢、炎症、凝血等方面也发挥重要作用.肝纤维化是慢性肝脏疾病发展成肝硬化的共同途径,终末期肝纤维化将导致肝硬化、肝衰竭,甚至危及生命.肝星状...  相似文献   

8.
非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)作为一种慢性肝病,在全球的发病率逐年递增。胰岛素抵抗和脂质代谢紊乱,以及随后的炎症反应和纤维化的激活,在其发生发展过程中发挥重要作用。但是对其认识仍很欠缺,且临床尚缺乏有效的药物。科研人员正极力探索NAFLD的相关病因及治疗的新的突破口。胆汁酸是在肝中合成的众多代谢产物之一。除帮助脂肪消化吸收外,胆汁酸还作为信号分子激活胆汁酸受体,一种重要的转录调节因子而发挥效应,对维持机体正常生理代谢至关重要。越来越多的证据表明,胆汁酸受体的功能与NAFLD的发生发展关系密切,研究其相关的作用与功能可为治疗NAFLD提供新见解和药物治疗靶点。本文就胆汁酸受体包括核受体,诸如法尼醇X受体 (farnesoid X receptor, FXR)、孕烷X受体 (pregnane X receptor ,PXR)等,和细胞表面受体,诸如跨膜G蛋白偶联胆汁酸受体5(transmembrane G protein-coupled receptor 5, TGR5)、鞘氨醇-1-磷酸受体2(phingosine-1-phosphate receptor 2, S1PR2)和毒蕈碱胆碱受体3 (M3 muscarinic receptor, M3R)通过调节胆汁酸稳态、脂质和糖代谢、能量代谢、肝的炎症和纤维化等参与NAFLD发病机制的研究进展进行总结,并进一步阐述了胆汁酸受体激动剂对NAFLD的治疗现状,以期更全面地了解NAFLD的发病机制以及为治疗找到更有效的途径。  相似文献   

9.
在全球人口老龄化背景下,衰弱症作为老年医学重要的多维概念,其早期诊断和干预已成为研究者关注的主要方向。能量和营养的低摄入在推动衰弱症进展中的作用不容忽视。肠道菌群通过双向调节宿主和肠菌的营养代谢、信号传导,以及对宿主多种器官的直接生物化学作用,不仅参与代谢疾病的发病机制,而且帮助营养策略发挥干预作用。本综述从骨骼肌和免疫角度总结了肠道菌群和食源性代谢物参与营养-衰弱相互作用的文献进展。现有文献提示短链脂肪酸和氨基酸等食源性肠道菌群代谢物作为宿主受体的配体参与调节肌肉、认知和免疫功能,进而影响宿主的衰弱进程,即支持“营养-肠道菌群-衰弱轴”的存在。随着肠道菌谱分析和代谢组学等技术在该领域的深入应用,营养-肠道菌群将为衰弱症的早期发现和干预提供新颖、经济和有效的个体化手段。  相似文献   

10.
肝纤维化是各种因素引起细胞外基质的生成和降解失衡,最终导致肝组织重塑。肾素血管紧张素系统(rennin angiotensin system,RAS)是机体内重要的内分泌调节系统,参与机体血压调节、水盐代谢等平衡并且发挥不可替代的作用。近些年的研究发现,肝脏中也存在局部完整的RAS,而肝纤维化的发生与肝组织RAS有着不可分割的关系。以前大量研究已经证实,RAS经典轴ACE-AngⅡ-AT1R在肝纤维化中表达上调,而抑制该轴的表达可以改善肝纤维化,也有研究表明,RAS非经典轴ACE2-Ang(1-7)-MasR通过拮抗经典轴而起到改善肝纤维化的作用;同时,RAS相关药物(经典轴抑制剂和非经典轴激动剂)显示出抗肝纤维化治疗的巨大潜力。该文就近年来对RAS在肝纤维化发生发展过程中的作用及其相关药物对肝纤维化的治疗作用予以综述。  相似文献   

11.
《Trends in microbiology》2023,31(3):254-269
The gut microbiota represents a ‘metabolic organ’ that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid–FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut–muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.  相似文献   

12.
The intestine is colonized by a considerable community of microorganisms that cohabits within the host and plays a critical role in maintaining host homeostasis. Recently, accumulating evidence has revealed that the gut microbial ecology plays a pivotal role in the occurrence and development of cardiovascular disease (CVD). Moreover, the effects of imbalances in microbe–host interactions on homeostasis can lead to the progression of CVD. Alterations in the composition of gut flora and disruptions in gut microbial metabolism are implicated in the pathogenesis of CVD. Furthermore, the gut microbiota functions like an endocrine organ that produces bioactive metabolites, including trimethylamine/trimethylamine N-oxide, short-chain fatty acids and bile acids, which are also involved in host health and disease via numerous pathways. Thus, the gut microbiota and its metabolic pathways have attracted growing attention as a therapeutic target for CVD treatment. The fundamental purpose of this review was to summarize recent studies that have illustrated the complex interactions between the gut microbiota, their metabolites and the development of common CVD, as well as the effects of gut dysbiosis on CVD risk factors. Moreover, we systematically discuss the normal physiology of gut microbiota and potential therapeutic strategies targeting gut microbiota to prevent and treat CVD.  相似文献   

13.
胆汁酸在人体的胆固醇代谢、脂质消化、宿主-微生物相互作用及通路调控等方面具有重要作用。大多数胆汁酸(95%)通过肝肠循环重回收,还有约5%作为结肠内细菌生物转化的基质。胆汁酸微生物转化中涉及的各种酶可通过肠道细菌培养而被验证,证明其有种属特异性。最近,生物信息学方法揭示了这些酶有多种亚型。因此,在胆汁酸转化中肠道菌群发挥重要的作用,微生物群落结构和功能对次级胆汁酸在胆汁酸池中的分布有深刻影响。研究认为胆汁酸和胆汁酸池的组成与几种疾病有关,包括炎症性肠病、代谢综合征和结直肠癌。最近,人们的重点放在肠道菌群如何改变胆汁酸进而导致或减轻某些疾病。本文总结了肠道菌群、胆汁酸生物转化和疾病状态之间的相互作用的研究进展。  相似文献   

14.
In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.  相似文献   

15.
Chronic hepatitis B (CHB) is a global epidemic disease that may progress to fibrosis, cirrhosis and hepatocellular carcinoma. The role of the liver‐bile acid‐microbiota axis in CHB remains unclear. The aims of this study are to elucidate the alteration of the gut microbiota and its functions in bile acid homeostasis in CHB patients with different degrees of fibrosis. In the present study, we evaluated serum and faecal bile acid profiles in healthy controls and CHB patients with biopsy‐proven diagnosis: patients had stage 0‐1 fibrosis were classified as mild CHB and patients had stage 2‐4 fibrosis were classified as moderate/advanced CHB. The levels of serum total bile acids (BAs) and primary BAs were increased in CHB patients with moderate/advanced fibrosis, whereas faecal total and secondary BAs levels were significantly lower. Analyses of gut microbiota exhibited a trend of decreased abundance in bacteria genera responsible for BA metabolism in CHB patients with moderate/advanced fibrosis. CHB is associated with altered bile acid pool which is linked with the dysregulated gut microbiota. The higher level of FGF‐19 may act in a negative feedback loop for maintaining the bile acid homeostasis.  相似文献   

16.
胆汁酸功能及其与肠道细菌相互关系   总被引:1,自引:0,他引:1  
胆汁酸具有多种重要生理功能. 近年研究发现,胆汁酸可作为信号分子与褐色脂肪细胞表面受体TGR5结合,可激活法尼酯衍生物X受体(nuclear receptor farnesoid X receptor, FXR)的表达. 通过激活这些不同的信号传导途径,胆汁酸可以分别起到调节体内能量代谢平衡、控制肥胖以及抑制肠道细菌过度增殖的作用. 胆汁酸与人及动物肠道细菌具有复杂的相互关系:肠道细菌对于胆汁酸的转化很重要,除了在胆汁酸的转化中发挥重要作用外,肠道微生物菌群还可以十分有效地水解已被胆汁酸清除的生物体内结合寄生物或异源物质,促进这些物质的活化或肠肝循环. 宿主拥有一些抑制细菌过度增殖的机制,这些机制包括快速转运以及利用抗菌肽、蛋白水解肽和胆汁酸等进行抑菌;而有些肠道细菌在进化中形成一些抗性机制可避免胆汁酸胁迫. 本文主要就胆汁酸控制肥胖以及抑制细菌过度增殖的机制和胆汁酸与肠道细菌相互关系进行了综述.  相似文献   

17.
Metabolism regulation centred on insulin resistance is increasingly important in nonalcoholic fatty liver disease (NAFLD). This review focuses on the interactions between the host cellular and gut microbial metabolism during the development of NAFLD. The cellular metabolism of essential nutrients, such as glucose, lipids and amino acids, is reconstructed with inflammation, immune mechanisms and oxidative stress, and these alterations modify the intestinal, hepatic and systemic environments, and regulate the composition and activity of gut microbes. Microbial metabolites, such as short-chain fatty acids, secondary bile acids, protein fermentation products, choline and ethanol and bacterial toxicants, such as lipopolysaccharides, peptidoglycans and bacterial DNA, play vital roles in NAFLD. The microbe–metabolite relationship is crucial for the modulation of intestinal microbial composition and metabolic activity. The intestinal microbiota and their metabolites participate in epithelial cell metabolism via a series of cell receptors and signalling pathways and remodel the metabolism of various cells in the liver via the gut–liver axis. Microbial metabolic manipulation is a promising strategy for NAFLD prevention, but larger-sampled clinical trials are required for future application.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common types of liver diseases worldwide and its incidence continues to increase. NAFLD occurs when the body can no longer effectively store excess energy in the adipose tissue. Despite the increasing prevalence of NAFLD, making lifestyle changes, including increased exercise, is often an elusive goal for patients with NAFLD. The liver directly connects to the gut-gastrointestinal milieu via the portal vein, which are all part of the gut-liver axis. Therefore, the gut-microbiome and microbial products have been actively studied as likely key factors in NAFLD pathophysiology. Hence, dysbiosis of the gut microbiome and therapeutic manipulation of the gut-liver axis are being investigated. Novel therapeutic approaches for modulating gut microbiota through the administration of probiotics, prebiotics, synbiotics, and antibiotics have been proposed with numerous promising initial reports on the effectiveness and clinical applications of these approaches. This review delves into the current evidence on novel therapies that modulate gut microbiota and discusses ongoing clinical trials targeting the gut-liver axis for the management and prevention of NAFLD.  相似文献   

19.
《遗传学报》2022,49(7):612-623
The gut–liver axis denotes the intricate connection and interaction between gut microbiome and liver, in which compositional and functional shifts in gut microbiome affect host metabolism. Hepatic portal vein of the blood circulation system has been thought to be the major route for metabolite transportation in the gut–liver axis, but the existence and importance of other routes remain elusive. Here, we perform metabolome comparison in blood circulation and mesenteric lymph systems and identify significantly shifted metabolites in serum and mesentery. Using cellular assays, we find that the majority of decreased metabolites in lymph system under high-fat diet are effective in alleviating metabolic disorders, indicating a high potential of lymph system in regulating liver metabolism. Among those, a representative metabolite, L-carnitine, reduces diet-induced obesity in mice. Metabolic tracing analysis identifies that L-carnitine is independently transported by the mesenteric lymph system, serving as an example that lymph circulation comprises a second route in the gut–liver axis to modulate liver metabolism. Our study provides new insights into metabolite transportation via mesenteric lymph system in the gut–liver axis, offers an extended scope for the investigations in host-gut microbiota metabolic interactions and potentially new targets in the treatment of metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号