首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposome, one of various drug carriers, has been extensively studied as an inert carrier for the delivery of protein, DNA, and biologically active agents into cells. Recently, much effort has been directed to the development of stimuli-sensitive liposomes that are able to respond to certain internal or external stimuli, such as, pH, electricity, temperature, magnet, or light. Among them, to obtain liposomes which release the contents in response to ambient temperature, liposomes have been modified with chemically synthetic polymers having various lower critical solution temperatures (LCST). In this study, instead of chemically synthetic polymers, a biologically produced elastin-like polypeptide (ELP), which was composed of oligomeric repeats of the pentapeptide sequence (Val-Pro-Gly-Val- Gly), was used for endowing the liposome with thermosensitivity. A model drug was encapsulated in the ELPconjugated liposomes and the release behavior of the drug caused by the liposome disruption due to the aggregation of ELPs was investigated. In addition, conjugation of ELP to liposome was identified with Fourier Transformed Infrared (FT-IR) and Scanning Electron Microscope (SEM) analyses.  相似文献   

2.
Egg yolk phosphatidylcholine liposomes modified with a copolymer of N-acryloylpyrrolidine and N-isopropylacrylamide having a lower critical solution temperature at ca. 40 degrees C were prepared and an effect of temperature on their interaction with CV1 cells was investigated. The unmodified liposomes were taken up by the cells approximately to the same extent after 3 h incubation at 37 and 42 degrees C. In contrast, uptake of the polymer-modified liposomes by CV1 cells decreased slightly at 37 degrees C but increased greatly at 42 degrees C, compared to the unmodified liposomes. Proliferation of the cells was partly prohibited by the incubation with the unmodified liposomes encapsulating methotrexate at 37 and 42 degrees C. The treatment with the polymer-modified liposomes containing methotrexate at 37 degrees C hardly effected the cell growth. However, the treatment at 42 degrees C inhibited the cell growth completely. It is considered that the highly hydrated polymer chains attached to the liposome surface suppressed the liposome-cell interaction below the lower critical solution temperature of the polymer but the dehydrated polymer chains enhanced the interaction above this temperature. Because interaction of the polymer-modified liposomes with cells can be controlled by the ambient temperature, these liposomes may have potential usefulness as efficient site-specific drug delivery systems.  相似文献   

3.
We prepared thermosensitive poly( N-(2-hydroxypropyl)methacrylamide mono/dilactate) (pHPMA mono/dilactate) polymer and studied temperature-triggered contents release from polymer-coated liposomes. HPMA mono/dilactate polymer was synthesized with a cholesterol anchor suitable for incorporation in the liposomal bilayers and with a cloud point (CP) temperature of the polymer slightly above normal body temperature (42 degrees C). Dynamic light scattering (DLS) measurements showed that whereas the size of noncoated liposomes remained stable upon raising the temperature from 25 to 46 degrees C, polymer-coated liposomes aggregated around 43 degrees C. Also, noncoated liposomes loaded with calcein showed hardly any leakage of the fluorescent marker when heated to 46 degrees C. However, polymer-coated liposomes showed a high degree of temperature-triggered calcein release above the CP of the polymer. Likely, liposome aggregation and bilayer destabilization are triggered because of the precipitation of the thermosensitive polymer above its CP onto the liposomal bilayers, followed by permeabilization of the liposomal membrane. This study demonstrates that liposomes surface-modified with HPMA mono/dilactate copolymer are attractive systems for achieving temperature-triggered contents release.  相似文献   

4.
A randomly alkylated copolymer of N-isopropylacrylamide, methacrylic acid and N-vinyl-2-pyrrolidone was characterized with regard to its pH- and temperature-triggered conformational change. It was then complexed to liposomes to produce pH-responsive vesicles. Light scattering and differential scanning calorimetry experiments performed at neutral pH revealed that the polymer underwent coil-to-globule phase transition over a wide range of temperatures. At 37 degrees C and pH 7.4, although the polymer was water-soluble, Fourier transform infrared spectroscopy analysis showed that it was partly dehydrated. At acidic pH, the decrease in the lower critical solution temperature was accompanied by an increase in cooperativity degree of the phase transition. Complexation of copolymer to liposomes did not substantially influence its phase transition. The liposome/copolymer complexes were stable at neutral pH but rapidly released their contents under acidic conditions. The copolymer slightly increased liposome circulation time following intravenous administration to rats. The addition of poly(ethylene glycol) to the formulation had a detrimental effect on pH-sensitivity but enhanced substantially the circulation time.  相似文献   

5.
H Ellens  J Bentz  F C Szoka 《Biochemistry》1986,25(2):285-294
We have examined whether there is a relationship between the lamellar-hexagonal phase transition temperature, TH, and the initial kinetics of H+- and Ca2+-induced destabilization of phosphatidylethanolamine (PE) liposomes. The liposomes were composed of dioleoylphosphatidylethanolamine, egg phosphatidylethanolamine (EPE), or phosphatidylethanolamine prepared from egg phosphatidylcholine by transesterification (TPE). These lipids have well-spaced lamellar-hexagonal phase transition temperatures (approximately 12, approximately 45, and approximately 57 degrees C) in a temperature range that allows us to measure the initial kinetics of bilayer destabilization, both below and above TH. The liposomes were prepared at pH 9.5. The TH of EPE and TPE was measured by using differential scanning calorimetry, and it was found that the TH was essentially the same at low pH or at high pH in the presence of 20 mM Ca2+. At temperatures well below TH, either at pH 4.5 or at pH 9.5 in the presence of Ca2+, the liposomes aggregate, leak, and undergo lipid mixing and mixing of contents. We show that liposome/liposome contact is involved in the destabilization of the PE liposomes. The temperature dependence of leakage, lipid mixing, and mixing of contents shows that there is a massive enhancement in the rate of leakage when the temperature approaches the TH of the particular PE and that lipid mixing appears to be enhanced. However, the fusion (mixing of aqueous contents) is diminished or even abolished at temperatures above TH. At and above the TH, a new mechanism of liposome destabilization arises, evidently dependent upon the ability of the PE molecules to adapt new morphological structures at these temperatures. We propose that this destabilization demarks the first step in the pathway to the eventual formation of the HII phase. Thus, the polymorphism accessible to PE is a powerful agent for membrane destabilization, but additional factors are required for fusion.  相似文献   

6.
The ability of several surface-active agents to stimulate the humoral immune response in mice against haptenated liposomes was tested. The surfactants were block copolymers of hydrophilic polyoxyethylene (POE) and hydrophobic polyoxypropylene (POP) that differed in m.w., percentage of POE, and mode of linkage of POP to POE. The liposomes were haptenated with tripeptide-enlarged dinitrophenyl coupled to phosphatidylethanolamine, which was incorporated into the liposomal membrane. Additional injection of mice with surfactant stimulated serum hemagglutination titers and splenic plaque-forming cell (PFC) numbers to varying extents. Block polymers with POP chains flanking a POE center, as well as polymers with POE chains flanking a POP center, displayed high adjuvant activity. These block polymers stimulated the antibody response in a dose-dependent manner. They stimulated the antibody response with both high and low antigen doses. Furthermore, the addition of one of these adjuvants (25R1) reduced the amount of carrier lipid required in the liposome in order to obtain an optimal antibody response. The surfactants, which displayed high adjuvant activity, did not interfere with liposome stability as measured with a liposome lysis assay. Moreover, in vitro preincubation of liposomes with a block polymer did not affect their immunogenicity. Optimal adjuvant activity was observed when both adjuvant and liposomes were administered by the same route. Simultaneous injection of both components, however, is not a prerequisite. Conclusively, it can be stated that nonionic block polymer surfactants are potent adjuvants for stimulation of the antibody response against haptenated liposomes.  相似文献   

7.
目的:建立钙通道Orai1的体外研究方法。方法:利用脂质体重组技术,将体外纯化的Orai1蛋白重组到脂质体膜上,利用蔗糖密度梯度离心来检测其重组效率及Orai1蛋白在脂质体膜上的结构,并利用钙染料Fura-2检测脂质体内钙离子的释放。结果:成功制备了脂质体及体外纯化了GST-Orai1融合蛋白,蔗糖密度梯度离心结果证明GST-Orai1蛋白成功重组到脂质体上,以及Orai1蛋白以多聚体的形式定位在脂质体膜上。钙离子释放实验证明脂质体内钙离子包装完好,可用于后续Orai1钙通道的功能研究。结论:利用脂质体重组技术建立了一种新的Orai1的研究方法,能够更直接有效地研究其功能及其活化机制。  相似文献   

8.
This study demonstrates rapid and pH-sensitive release of a highly water-soluble fluorescent aqueous content marker, pyranine, from egg phosphatidylcholine liposomes following incorporation of N-isopropylacrylamide (NIPA) copolymers in liposomal membranes. The pH-sensitivity of this system correlates with the precipitation of the copolymers at acidic pH. In vitro release can be significantly improved by increasing the percentage of anchor in the copolymer and thus favoring its binding to the liposomal bilayer. In the case of liposomes containing a poly(ethylene glycol)-phospholipid conjugate, the insertion of the pH-sensitive copolymer in the liposomal membrane appears to be sterically inhibited. Dye release from these formulations at acidic pH can still be achieved by varying the anchor molar ratio and/or molecular mass of the polymers or by including the latter during the liposome preparation procedure. Removal of unbound polymer results in decreased leakage only when the copolymer is inserted by incubation with preformed liposomes, but can be overcome by preparing liposomes in the presence of polymer. Aqueous content and lipid mixing assays suggest contents release can occur without membrane fusion. The results of this study indicate that the addition of pH-sensitive copolymers of NIPA represents promising strategy for improving liposomal drug delivery.  相似文献   

9.
Three kinds of copolymers of N-isopropylacrylamide (NIPAM) with the same conformational transition temperature and varying transition endotherms were synthesized with N-acryloylpyrrolidine (APr), N,N-dimethylacrylamide (DMAM), and N-isopropylmethacrylamide (NIPMAM) as the comonomers. Two dodecyl groups were incorporated into the termini of these copolymers as an anchor for the fixation to a liposomal membrane. Egg yolk phosphatidylcholine liposomes having these copolymers were prepared and their temperature-sensitive contents release and association properties were investigated. While these copolymer exhibited a conformational transition at ca. 40 degrees C, DeltaH for the transition increased in the order of poly(APr-co-NIPAM) < poly(DMAM-co-NIPAM) < poly(NIPMAM-co-NIPAM). The liposomes containing poly(NIPMAM-co-NIPAM) showed a drastic release enhancement of entrapped calcein above the transition temperature, whereas the liposomes with poly(DMAM-co-NIPAM) and those with poly(APr-co-NIPAM) exhibited moderate and slight enhancement of calcein release above that temperature, respectively. On the contrary, the liposomes containing poly(APr-co-NIPAM) showed significant aggregation above the transition temperature, but the aggregation was hardly observed for the liposomes having poly(NIPMAM-co-NIPAM), indicating that poly(APr-co-NIPAM) more efficiently made the liposome surface hydrophobic. Thus, we concluded that the copolymer with a large DeltaH is suitable for obtaining functional liposomes with a temperature-sensitive contents release property, whereas the copolymer with a small DeltaH is appropriate for preparing functional liposomes with a temperature-sensitive surface property.  相似文献   

10.
Stability of dry liposomes in sugar glasses.   总被引:13,自引:0,他引:13       下载免费PDF全文
Sugars, particularly trehalose and sucrose, are used to stabilize liposomes during hydration (freeze-drying and air-drying). As a result, dry liposomes are trapped in a sugar glass, a supersaturated and thermodynamically unstable solid solution. We investigated the effects of the glassy state on liposome fusion and solute retention in the dry state. Solute leakage from dry liposomes was extremely slow at temperatures below the glass transition temperature (Tg); however, it increased exponentially as temperature increased to near or above the Tg, indicating that the glassy state had to be maintained for dry liposomes to retain trapped solutes. The leakage of solutes from dry liposomes followed the law of first-order kinetics and was correlated linearly with liposome fusion. The kinetics of solute leakage showed an excellent fit with the Arrhenius equation at temperatures both above and below the Tg, with a transitional break near the Tg. The activation energy of solute leakage was 1320 kJ/mol at temperatures above the Tg, but increased to 1991 kJ/mol at temperatures below the Tg. The stabilization effect of sugar glass on dry liposomes may be associated with the elevated energy barrier for liposome fusion and the physical separation of dry liposomes in the glassy state. The half-life of solute retention in dry liposomes may be prolonged by storing dry liposomes at temperatures below the Tg and by increasing the Tg of the dry liposome preparation.  相似文献   

11.
We prepared block copolymers of (2-ethoxy)ethoxyethyl vinyl ether (EOEOVE) and octadecyl vinyl ether (ODVE) with the number average molecular weights of 6900, 9300, and 16 700 by living cationic polymerization. The poly(EOEOVE) block acts as a temperature-sensitive moiety, and the poly(ODVE) block acts as an anchor moiety. We also investigated the effect of chain length of the copolymer poly(EOEOVE) block on the ability to sensitize liposomes. The copolymers underwent a coil-globule transition at approximately 36 degrees C in the presence of a membrane of egg yolk phosphatidylcholine (EYPC), detected using differential scanning calorimetry (DSC). Liposomes encapsulating calcein, a water-soluble fluorescent dye, were prepared from mixtures of dioleoylphosphatidylethanolamine, EYPC, and the copolymers. While the copolymer-modified liposomes released little calcein below 30 degrees C, release was enhanced above 35 degrees C, indicating that dehydrated copolymer chains destabilized the liposome membrane. In addition, copolymers with a longer poly(EOEOVE) block induced a more drastic enhancement of contents release in a narrow temperature region near the transition temperature of the poly(EOEOVE) block. As a result, the copolymer with an average molecular weight of 16 700 generated highly sensitive liposomes that produced rapid and dramatic release of the contents in response to temperature.  相似文献   

12.
Polymer membranes composed ofN,N-dimethylaminoethyl methacrylate (DMAEMA) and acrylamide (AAm) (or ethyl acrylamide (EAAm)) were prepared to demonstrate the thermocontrol of solute permeation. Poly DMEMA has a lower critical solution temperature (LCST) at around 50°C in water. With the copolymerization of DMAEMA with AAm (or EAAm), a shift in the LCST to a lower temperature was observed, probably due to the formation of hydrogen bonds between the amide andN,N-dimethylamino groups. However, the temperature-induced phase transition of poly (DMAEMA-co-EAAm) did not show a similar trend to that of poly (DMAEMA-co-AAm) in the gel state. The hydrogen bonds in poly (DMAEMA-co-EAAm) were significantly disrupted with the formation of a gel network, which led to a difference in the swelling behavior of polymer gels in response to temperature. To apply these polymers to temperature-sensitive solute permeation, polymer membranes were prepared. The permeation pattern of hydrocortisone, used as the model solute, was explained based on the temperature-sensitive swelling behavior of the polymer membranes.  相似文献   

13.
Poly(ethylene glycol)-coated liposomes were prepared with two new synthesised pegylated cholesterol (Chol) derivatives linked via carbamate bond. Poly(ethylene glycol) (PEG) was directly linked to Chol (PEG-Chol) or through a space arm of diaminebutane (PEG-L-Chol). In buffer, the physicochemical properties of PC/Chol liposomes (2/1, molar ratio) containing up to 10 mol% of pegylated Chol derivatives did not change significantly and the PEG layer at liposome surface inhibited the agglutination of biotin-liposomes induced by streptavidin. On the other hand, in serum, PEG-L-Chol seemed to reduce the interactions of liposomes with serum proteins, much more than PEG-Chol. The low steric hindrance of PEG-Chol derivative may be due to the slow conformational transition rate of the polymer, since PEG may be deeper located in the membrane. The coupling efficiency of the ligand to the functionalised amino group at the polymer end was also affected, but, its antigen-binding activity was preserved. The basic physical-chemical characteristics studied in this work are relevant to assess the application of pegylated Chol liposomes as drug delivery systems.  相似文献   

14.
Surface modification of liposomes with amphiphilic flexible polymers significantly prolongs their circulation time in blood and reduces uptake by cells of the reticuloendothelial system (RES). Several polymers have already been shown to provide steric protection to liposomes. Still more polymers are expected to serve this purpose, thus broadening the variability of properties of long-circulating liposomes. Poly[N-(2-hydroxypropyl)methacrylamide] (poly (HPMA)) seems to have some properties similar to polyethylene glycol (PEG), the most widely used polymer in liposome surface modification, including flexibility, hydrophilicity and low immunogenicity, which suggest that it may also function as an efficient steric protector of liposomes. Semitelechelic poly(HPMA) with single- or double-oleic acid hydrophobic terminus were synthesized and incorporated into the surface of liposomes composed of phosphatidylcholine and cholesterol. These poly(HPMA)-modified liposomes provided strong steric protection for liposomes, increasing their circulation time and decreasing liver accumulation in experimental mice. Poly(HPMA)-modified liposomes may become a useful addition to a family of long-circulating liposomes with potential to be used as a drug delivery system.  相似文献   

15.
Poly(ethylene glycol) (PEG)-stabilized liposomes were recently shown to exhibit differences in cell uptake that were linked to the liposome charge. To determine the differences and similarities between charged and uncharged PEG-decorated liposomes, we directly measured the forces between two supported, neutral bilayers with terminally grafted PEG chains. The measurements were performed with the surface force apparatus. The force profiles were similar to those measured with negatively charged PEG conjugates of 1, 2-distearoyl-sn-glycero-3-phosphatidyl ethanolamine (DSPE), except that they lacked the longer ranged electrostatic repulsion observed with the charged compound. Theories for simple polymers describe the forces between end-grafted polymer chains on neutral bilayers. The force measurements were complemented by surface plasmon resonance studies of protein adsorption onto these layers. The lack of electrostatic forces reduced the adsorption of positively charged proteins and enhanced the adsorption of negatively charged ones. The absence of charge also allowed us to determine how membrane charge and the polymer grafting density independently affect protein adsorption on the coated membranes. Such studies suggest the physical basis of the different interactions of charged and uncharged liposomes with proteins and cells.  相似文献   

16.
Poly(propylene succinate) (PPSu) polymers of average molecular weights from 2,800 to 13,100 g/mol were synthesized and characterized with regard to crystallinity, thermal properties, and cytocompatibility. Higher molecular weight samples exhibited lower degree of crystallinity and melted at lower temperatures. Melting of the polymer appeared to begin at 38°C. PPSu cytocompatibility was investigated based on human umbilical vein endothelial cells viability in the presence of increasing concentrations of polymer, and it was found that PPSu exhibited comparable cytocompatibility with poly(dl-lactide). The feasibility of applying PPSu as a drug carrier was shown for the first time, as solid dispersions and nanoparticles of sodium fluvastatin based in PPSu were prepared. Drug release rates decreased with increasing the molecular weight of PPSu in both solid dispersions and nanoparticles. For dispersions prepared from PPSu of the same molecular weight, drug release rates increased with drug loading. It appears that PPSu applicability as a drug carrier warrants further consideration.  相似文献   

17.
Poly(anhydride-esters) based on iodinated versions of salicylic acid were synthesized via both melt-condensation and solution polymerization techniques to generate radiopaque biomaterials. The poly(anhydride-esters) from iodinated salicylates were highly X-ray opaque compared to poly(anhydride-esters) from salicylic acid. Molecular weight and Young's modulus of polymers prepared by melt-condensation were typically two-to-three times higher than polymers prepared by solution methods. The glass transition temperatures of the polymers were dependent on the iodine concentration; polymers containing more iodine had higher glass transition temperatures. Cytotoxicity studies using mouse fibroblasts indicated that iodinated salicylate-based poly(anhydride-esters) prepared by both polymerization methods are biocompatible with cells at low polymer concentrations (0.01 mg/mL).  相似文献   

18.
H Ellens  J Bentz  F C Szoka 《Biochemistry》1986,25(14):4141-4147
The initial kinetics of fusion and leakage of liposomes composed of N-methylated dioleoylphosphatidylethanolamine (DOPE-Me) have been correlated with the phase behavior of this lipid. Gagné et al. [Gagné, J., Stamatatos, L., Diacovo, T., Hui, S. W., Yeagle, P., & Silvius, J. (1985) Biochemistry 24, 4400-4408] have shown that this lipid is lamellar (L alpha) below 20 degrees C, is hexagonal (HII) above 70 degrees C, and shows isotropic 31P NMR resonances at intermediate temperatures. This isotropic state is also characterized by complex morphological structures. We have prepared DOPE-Me liposomes at pH 9.5 and monitored the temperature dependence of the mixing of aqueous contents, leakage, and changes in light scattering upon reduction of the pH to 4.5. At and below 20 degrees C, where the lipid is in the L alpha phase, there is very little aggregation or destabilization of the liposomes. Between 30 and 60 degrees C, i.e., where the lipid is in the isotropic state, the initial rates of liposome fusion (mixing of aqueous contents) and leakage increase. At temperatures approaching that where the hexagonal HII phase transition occurs, the initial rates and extents of fusion decrease, whereas leakage is enhanced. Similar results were found for dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine (2:1) liposomes. These results clearly establish a common mechanism between the appearance of the isotropic state (between the L alpha and HII phases) and the promotion of liposome fusion. We propose a simple model to explain both the observed behavior of phosphatidylethanolamine-containing membranes with respect to liposome fusion and/or lysis and the beginning of the L alpha-HII phase transition.  相似文献   

19.
Highly branched poly(N-isopropylacrylamide) for use in protein purification   总被引:1,自引:0,他引:1  
Poly(N-isopropylacrylamide)s with imidazole endgroups were used to separate a histidine-tagged protein fragment directly from a crude cell lysate. The polymers display a lower critical solution temperature that can be tuned to occur at a range of subambient temperatures. UV-visible spectra indicated differences in the binding in aqueous media of Cu(II) and Ni(II) to the imidazole endgroups. These changes in the UV-visible spectra were reflected in the solution/aggregation behavior of the polymers as studied by dynamic light scattering. The addition of Cu(II) disaggregated the polymers, and the polymer coil swelled. On the other hand, when Ni(II) was added the polymers remained aggregated in aqueous media. The polymers were used to purify residues 230-534 of the histidine-tagged breast cancer susceptibility protein his6-BRCA1. Cu(II) was found to be better suited to the formation of useful polymer-metal ion-protein complexes that display cloud points, since Ni(II)/polymer mixtures generated very little purified protein. The polymers were synthesized using a previously reported variation of the reversible addition-fragmentation chain termination (RAFT) methodology, using the chain transfer agent 3H-imidazole-4-carbodithioic acid 4-vinyl benzyl ester with N-isopropylacrylamide (NIPAM).  相似文献   

20.
Liposomes prepared from DMPC (80%) and cholesterol (20%) were modified with a series of hydrophobically modified N-substituted polyacrylamides, namely, poly[N-isopropylacrylamide] (PNIPAM), poly[N,N-bis(2-methoxyethyl) acrylamide] (PMEAM), and poly[(3-methoxypropyl)acrylamide] (PMPAM). The hydrophobic group, N-[4-(1-pyrenylbutyl)-N-n-octadecylamine was attached to one end of the polymer chains to serve as an anchor for incorporation into the liposome bilayer. Liposome-polymer interactions were confirmed using fluorescence spectroscopy and chemical analysis. Microscopy revealed differences in aggregation tendency between unmodified and polymer-modified liposomes. Proteins adsorbed to liposome surfaces during exposure to human plasma were identified by immunoblot analysis. It was found that both unmodified and polymer-modified liposomes adsorb a wide variety of plasma proteins. Contact phase coagulation proteins, complement proteins, cell-adhesive proteins, serine protease inhibitors, plasminogen, antithrombin III, prothrombin, transferrin, alpha(2)-microglobulin, hemoglobin, haptoglobin and beta-lipoprotein as well as the major plasma proteins were all detected. Some differences were found between the unmodified and polymer-modified liposomes. The unmodified liposomes adsorbed plasminogen mainly as the intact protein, whereas on the modified liposomes plasminogen was present in degraded form. Also, the liposomes modified with PNIPAM in its extended conformation (below the lower critical solution temperature) appeared to adsorb less protein than those containing the 'collapsed' form of PNIPAM (above the LCST).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号