首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The human T cell receptor for antigen (Ti) has recently been identified on IL-2 dependent T cell clones as a 90 kd disulfide-linked heterodimer comprised of one 49-51 kd alpha (alpha) and one 43 kd beta (beta) chain. These subunits are noncovalently associated with a monomorphic 20-25 kd T3 molecule. Here, we produce monoclonal antibodies to a human tumor (REX) derived from an earlier stage of thymic differentiation in order to determine whether clonotypic structures are expressed and to define the ontogeny of Ti. The results of SDS-PAGE and peptide map analyses indicate that an homologous T3-associated heterodimer is synthesized and expressed by REX. This glycoprotein shares several peptides in common with clonotypic structures on an IL-2 dependent T cell clone. In addition, similar Ti related molecules appear during intrathymic ontogeny in parallel with surface T3 expression. The latter findings provide the structural basis for the immunological competence observed exclusively within the T3+ thymocyte compartment.  相似文献   

2.
We describe a monoclonal antibody, WT-31, that reacted with all human T lymphocytes. Electrophoretic analysis of the material reacting with WT-31 revealed that it precipitated predominantly an 80-kD disulfide-linked heterodimer from the cell surface-labeled T leukemic cell line HPB-ALL. This heterodimer was identical to the one precipitated with a recently described monoclonal reagent, T40/25, which recognizes a clonotypic structure on HPB-ALL. The target antigen of WT-31 comodulated with T3 after incubation of T cells with excess anti-T3 antibody, indicating that the WT-31 target antigen is associated with T3. We also found that anti-T3 reagents, but not the clonotypic reagent T40/25, blocked binding of FITC-labeled WT-31 to HPB-ALL cells. This indicates that the T cell receptor epitope recognized by WT-31 is located close to the epitopes recognized by the anti-T3 reagents anti-Leu-4 and SPV-T3b but distal from the clonotypic T40/25 epitope. Functional studies showed that WT-31 reacts similar to anti-T3 antibodies. It is mitogenic for resting T cells, blocks cytolysis mediated by alloantigen-specific CTL clones, and induces antigen-nonspecific cytolysis by CTL clones against Daudi target cells. WT-31 did not inhibit the formation of conjugates, but it blocked cytolysis just before or during the Ca2++-dependent programming for lysis. We conclude that WT-31 is an antibody that recognizes a common determinant on the T cell receptor for antigen. The present results support the notion that the two chains of the T cell receptor (alpha and beta) form a functional protein ensemble with the three invariable T3 polypeptide chains (T3-gamma-, delta-, epsilon).  相似文献   

3.
Biosynthesis and processing of murine T-cell antigen receptor   总被引:11,自引:0,他引:11  
B W McIntyre  J P Allison 《Cell》1984,38(3):659-665
The antigen-specific receptor of C6VL T-lymphoma cells is a disulfide-linked heterodimer composed of 39 kd alpha chain and a 41 kd beta chain, both of which exhibit charge microheterogeneity. Pulse-chase labeling experiments indicate that epitopes reactive with the anti-receptor xenoantiserum #8177 were detectable by 2 min, while the clonotypic epitope reactive with monoclonal antibody 124-40 was not detectable until 10 min. Digestion with endoglycosidases H and F revealed that both subunits have at least three N-linked oligosaccharide side chains. The deglycosylated alpha and beta subunits were 27 and 32 kd, respectively. These data suggest that the dimeric receptor is formed shortly after translation, followed by extensive glycosylation. Emergence of the C6VL clonotypic epitope, and perhaps the antigen binding site, may therefore be dependent on post-assembly events.  相似文献   

4.
B W McIntyre  J P Allison 《Cell》1983,34(3):739-746
We have previously demonstrated that T lymphomas may express clonally specific epitopes that are carried by a T-cell-restricted, disulfide-bonded heterodimeric glycoprotein. We have used a monoclonal antibody, 124-40, to isolate the lymphoma-specific antigen and raise a xenoantiserum to the molecule. This antiserum immunoprecipitates a family of disulfide-bonded dimers from normal thymocytes and T cells, but is unreactive with B cells. Peptide maps prepared after limited proteolytic digestion indicate that the molecules from the different cell populations have homologous primary structures. Comparison of two-dimensional tryptic peptide maps indicate that, in addition to several common peptides, the molecules exhibit considerable structural heterogeneity. Taken together, these data indicate that the T-cell-specific heteroduplex has regions of constant and variable structure consistent with the properties expected for the T cell antigen receptor.  相似文献   

5.
Hybridomas were prepared from the spleen of a BALB/c mouse immunized with EL-4 T lymphoma cells. One, designated A1, was found to secrete a monoclonal antibody that reacted with two T lymphoma cells of C57BL origin, EL-4 and C6VLB, but not with normal C57BL/6 splenocytes or thymocytes, C57BL/6 T cell clones, or other T or B lymphomas by complement-mediated cytotoxicity or indirect immunofluorescent staining. Monoclonal antibody (MAb) A1 precipitated a protein that migrated at 85 kD under nonreducing and 43 kD under reducing conditions. The fact that the antigen defined by MAb A1 was a disulfide-linked dimer, together with the essentially clone-specific distribution of the reactive epitope, raised the possibility that the antibody defined an epitope of the antigen receptor. However, several additional observations revealed that the antibody defined a distinct and novel T cell surface structure. MAb 124-40, previously shown to react with the antigen receptor of C6VLB cells, reacted with variants of C6VLB that failed to express the A1 epitope. Sequential immunoprecipitation indicated that MAb A1 and MAb 124-40 reacted with distinct molecular species on C6VLB cells. Endoglycosidase digestion showed that the structure reactive with MAb A1 was not derived from that reactive with MAb 124-40 by addition of N-linked oligosaccharide residues. Two-dimensional gel electrophoretic analysis of precipitates obtained from radioiodinated C6VLB cells with MAb 124-40 resolved the alpha and beta subunits of the antigen receptor. Similar analysis of precipitates obtained with MAb A1 revealed only a single basic chain under reducing conditions, although anomalous mobility suggestive of a second, more acidic chain was observed under nonreducing conditions. Two-dimensional maps of tyrosine-containing chymotryptic peptides of the proteins isolated with MAb A1 and MAb 124-40 were completely different, suggesting that the molecules shared no peptides and were distinct in primary structure. Finally, cross-linking studies performed with a cleavable reagent indicated that the A1 molecule, unlike the antigen receptor defined with MAb 124-40, was not associated with additional, T3-like structures on the surface of C6VLB cells. Although the MAb A1 was unreactive with normal cells in cytotoxicity or staining assays, a molecule of the appropriate size was immunoprecipitated in small amounts from lysates of radioiodinated normal spleen and thymus cells. These data indicate that MAb A1 defines a novel disulfide-linked T cell surface molecule distinct from the antigen receptor.  相似文献   

6.
Two monoclonal antibodies (mAb) directed to the dual reactive cytolytic T lymphocyte clone OH8 (Db + H-Y and H-2d) were established. Analysis by cell surface staining and immunoprecipitation of radiolabeled surface molecules of OH8 followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that both mAb recognized an identical heterodimeric, clonotypic structure on OH8 cells, i.e., T cell receptor. However, although the MR3-2 mAb inhibited the lysis of either Db + H-Y or H-2d targets by OH8, the MR3-6 mAb inhibited the lysis of H-2d target cells, but not that of Db + H-Y target cells. Modulation of T cell receptor by either MR3-2 or MR3-6 mAb rendered the OH8 cytolytic T lymphocyte incapable of killing both Db + H-Y and H-2d target cells. These findings suggest that different epitopes of OH8 T cell receptor were involved for the recognition of self + antigen and alloantigen.  相似文献   

7.
HIV epitope-specific T cell responses are often comprised of clonotypic expansions with distinct functional properties. In HIV(+) individuals, we measured programmed death-1 (PD-1) and IL-7Rα expression, MHC class I tetramer binding, cytokine production, and proliferation profiles of dominant and subdominant TCR clonotypes to evaluate the relationship between the composition of the HIV-specific T cell repertoire and clonotypic phenotype and function. Dominant clonotypes are characterized by higher PD-1 expression and lower C127 expression compared with subdominant clonotypes, and TCR avidity positively correlates with PD-1 expression. At low peptide concentrations, dominant clonotypes fail to survive in culture. In response to stimulation with peptides representing variant epitopes, subdominant clonotypes produce higher relative levels of cytokines and display greater capacity for cross-recognition compared with dominant clonotypes. These data indicate that dominant clonotypes within HIV-specific T cell responses display a phenotype consistent with ongoing exposure to cognate viral epitopes and suggest that cross-reactive, subdominant clonotypes may retain greater capacity to suppress replication of viral variants as well as to survive in the absence of strong antigenic signaling.  相似文献   

8.
In previous studies we demonstrated that the antigen receptor complex on murine T cells is phosphorylated after antigen or mitogen activation. After the clonotypic structures bind antigen, the invariant subunits or CD3 molecules are the target of dual kinase activation. The antigen receptor CD3-gamma-chain subunit is phosphorylated on serine residues by activated protein kinase C and the p21 subunit is phosphorylated by a tyrosine kinase. Herein we demonstrate that another mechanism of receptor activation by the stimulatory monoclonal antibody 145-2C11, which binds the CD3-epsilon chain, results in a similar pattern of kinase activation and receptor phosphorylation.  相似文献   

9.
T cell receptor (TCR) nucleotide sequences are often generated during analyses of T cell responses to pathogens or autoantigens. The most important region of the TCR is the third complementarity-determining region (CDR3) whose nucleotide sequence is unique to each T cell clone. The CDR3 interacts with the peptide and thus is important for recognizing pathogen or autoantigen epitopes. While conventions exist for identifying the various TCR chains, there is a lack of a concise nomenclature that would identify both the amino acid translation and nucleotide sequence of the CDR3. This deficiency makes the comparison of published TCR genetic and proteomic information difficult. To enhance information sharing among different databases and to facilitate computational assessment of clonotypic T cell repertoires, we propose a clonotype nomenclature. The rules for generating a clonotype identifier are simple and easy to follow, and have a built-in error-checking system. The identifier includes the V and J region, the CDR3 length as well as its human or mouse origin. The framework of this naming system could also be expanded to the B cell receptor. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Recent studies have demonstrated the utility of synthetic combinatorial libraries for the rapid identification of peptide ligands that stimulate clonotypic populations of T cells. Here we screen a decapeptide combinatorial library arranged in a positional scanning format with two different clonotypic populations of CD4+ T cells to identify peptide epitopes that stimulate proliferative responses by these T cells in vitro. An extensive collection of mimic peptide sequences was synthesized and used to explore the fine specificity of TCR/peptide/MHC interactions. We also demonstrate that many of these deduced ligands are not only effective immunogens in vivo, but are capable of inducing T cell responses to the original native ligands used to generate the clones. These results have significant implications for considerations of T cell specificity and the design of peptide vaccines for infectious disease and cancer using clinically relevant T cell clones of unknown specificity.  相似文献   

11.
The monoclonal antibody A2B4-2 has been shown to bind to the antigen receptor on the cloned pigeon cytochrome c-specific T cell hybrid, 2B4. Initial immunoprecipitation and SDS-PAGE analysis with this clonotypic antibody demonstrated that the antigen receptor on this cell had a m.w. of 85,000 to 90,000. Under reducing conditions, the receptor protein appeared as two bands of 45,000 to 50,000 and 40,000 to 44,000 on an SDS-PAGE gel. In this paper the antigen receptor on this T cell hybrid is further characterized. The molecule is shown to be a heterodimer that exists in two different forms on the cell surface. Receptor molecules with an apparent m.w. of 84,000 and 86,000 were isolated by immunoprecipitation and separation on polyacrylamide gradient gels. After reduction, the individual alpha- and beta-chains were separated by isoelectric focusing. In both forms of the receptor, the acidic alpha-chain had an apparent m.w. of 42,000 to 44,000. This alpha-chain associated with one of two forms of beta-chain. One beta-chain had a m.w. of 42,000 to 44,000, with a pI range of 7.5 to 7.9, and the alternate form of the beta-chain, beta', had a m.w. of 46,000 to 48,000 and a more acidic pI range of 6.5 to 7.5. The results of this investigation indicate that under reducing conditions on SDS-PAGE gels, the original upper 45,000 to 50,000 m.w. band represented beta'-chains alone, whereas the lower 40,000 to 44,000 m.w. band represented a mixture of alpha- and beta-chains. Additional data are presented to indicate that this heterodimeric protein has intrachain as well as interchain disulfide bonds. This conclusion was reached from the characteristic pattern of protein migration on SDS-PAGE gels in the presence of a reducing agent concentration gradient. Thus, both chains of the antigen receptor must have intrachain disulfide bonds and may have similar domain structures.  相似文献   

12.
We measured CD8 T cell clonotypic diversity to three epitopes recognized in C57BL/6 mice infected with mouse hepatitis virus, strain JHM, or lymphocytic choriomeningitis virus. We isolated epitope-specific T cells with an IFN-gamma capture assay or MHC class I/peptide tetramers and identified different clonotypes by Vbeta chain sequence analysis. In agreement with our previous results, the number of different clonotypes responding to all three epitopes fit a log-series distribution. From these distributions, we estimated that >1000 different clonotypes responded to each immunodominant CD8 T cell epitope; the response to a subdominant CD8 T cell epitope was modestly less diverse. These results suggest that T cell response diversity is greater by 1-2 orders of magnitude than predicted previously.  相似文献   

13.
In a T cell antigen receptor complex (TCR), the clonotypic disulfide-linked Ti heterodimer is noncovalently associated with the invariant CD3 polypeptides. The latter are composed of three monomeric subunits (gamma, delta, epsilon) and either a disulfide-linked homodimer (zeta zeta) or a disulfide-linked heterodimer (zeta eta). The exact stoichiometry of the Ti-CD3 subunits in a given complex is still largely unknown. Here, we report the presence of a CD3 epsilon dimer in a fraction of the TCR. When TCRs from both human and murine T lymphocytes were immunoprecipitated with monoclonal antibodies against either CD3 epsilon or Ti, a 40-kDa disulfide-linked dimer was coprecipitated with the other TCR subunits from digitonin lysates. Amino acid sequence analysis of peptides obtained by in situ CNBr cleavage of the 20-kDa product blotted to polyvinyl difluoride membranes from reducing/nonreducing two-dimensional gels identified human CD3 epsilon. Assuming this CD3 epsilon to derive from a homodimer, then either some TCRs contain more than one CD3 epsilon chain or several TCRs are covalently associated with one another via their CD3 epsilon subunits. Although it has been suggested that a putative TCR association with CD2 exists under similar conditions to those utilized to detect CD3 epsilon dimers, the CD2 molecule was not coimmunoprecipitated with the TCR by any of a series of anti-CD3 epsilon monoclonal antibodies. In conjunction with the fact that CD2 and the TCR do not colocalize during conjugate formation between T cells and antigen-presenting cells (Koyasu, S., Lawton, T., Novick, D., Recny, M. A., Siliciano, R. F., Wallner, B. P., and Reinherz, E. L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 2603-2607), we conclude that CD2 and the TCR are not physically associated on the T cell surface.  相似文献   

14.
Monoclonal antibodies specific for each of the flagellar tektins were prepared and used to determine whether structures similar to tektin filaments are present in cells lacking cilia or flagella. This analysis was performed by double-label immunofluorescence microscopy of several cell lines and by immunoblots of protein fractions. Two of the four anti-tektin antibodies, the antibodies 3-7-1 and 3-10-1, which bind different epitopes of the C-tektin, label 3T3, HeLa, PtK2, and BHK-21 cells as well as myotubes. The antibody 3-7-1 stains intermediate filament structures in the cells and binds vimentin or desmin in preparations of cytoskeletal proteins; whereas the antibody 3-10-1 stains nuclear envelopes in the cells and binds lamin A and C in preparations of cytoskeletal proteins or nuclear lamina. Structural similarities between the C-tektin and intermediate filament proteins probably are extended to more than two epitopes because polyclonal antibodies anti-vimentin and anti-desmin bind to C-tektin. These polyclonal antibodies also bind to A-tektin. The cross-reaction of monoclonal and polyclonal antibodies binding to epitopes in tektin and intermediate filament components and the existence of a high content of alpha-helical structure in the tektin subunits (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22) indicate that tektin and intermediate filaments are homologous in several parts of their structure.  相似文献   

15.
Our understanding of the molecular mechanisms of T cell alloreactivity remains limited by the lack of systems for which both the T cell receptor allo- and cognate ligand are known. Here we provide evidence that a single alloreactive T cell receptor interacts with analogous structural regions of its cognate ligand, HLA-B*0801(FLRGRAYGL), as its allogeneic ligand, HLA-B*3501(KPIVVLHGY). The crystal structures of the binary peptide-major histocompatibility complexes show marked differences in the conformation of the heavy chains as well as the bound peptides. Nevertheless, both epitopes possess a prominent solvent-exposed aromatic residue at position 7 flanked by a small glycine at position 8 of the peptide determinant. Moreover, regions of close structural homology between the heavy chains of HLA B8 and HLA B35 coincided with regions that have previously been implicated in "hot spots" of T cell receptor recognition. The avidity of this human T cell receptor was also comparable for the allo- and cognate ligand, consistent with the modes of T cell receptor binding being broadly similar for these complexes. Collectively, it appears that highly focused structural mimicry against a diverse structural background provides a basis for the observed alloreactivity in this system. This cross-reactivity underpins the T cell degeneracy inherent in the limited mature T cell repertoire that must respond to a vast diversity of microbial antigens.  相似文献   

16.
K Udaka  T J Tsomides  H N Eisen 《Cell》1992,69(6):989-998
The antigenic structures that initiate T cell responses to foreign (allogeneic) cells have long attracted considerable interest. We have purified and sequenced a peptide from mouse spleen that is recognized in association with the class I MHC protein H-2Ld by 2C, an alloreactive CD8+ T cell clone. The peptide (LSP-FPFDL) greatly enhances the susceptibility of Ld+ cells to lysis by 2C, and this activity is completely blocked by a clonotypic antibody against the 2C T cell receptor. Thus, this study characterizes the naturally occurring peptide moiety of an MHC-I/peptide complex recognized by alloreactive CD8+ T cells. The peptide, which occurs in the thymus of MHC-disparate mice, can be used to study T cell development in mice expressing transgenes for the 2C T cell receptor.  相似文献   

17.
D O Morgan  L Ellis  W J Rutter  R A Roth 《Biochemistry》1987,26(11):2959-2963
Insulin receptor down-regulation was studied in various Chinese hamster ovary (CHO) cell lines expressing transfected human insulin receptor cDNAs. In addition to a cell line expressing the normal receptor (CHO.T line), three lines expressing mutated receptors were studied: the CHO.T-t line, which expresses a receptor with a degraded cytoplasmic domain due to the removal of the C-terminal 112 amino acids, and the CHO.YF1 and CHO.YF3 lines, in which important autophosphorylation sites of the receptor kinase (tyrosines-1162 and -1163) have been replaced by phenylalanine. A monoclonal anti-receptor antibody, but not insulin itself, was found to down-regulate cell surface receptor levels in all four cell lines by 60-80% after 18-h treatment at 37 degrees C. Down-regulation of the CHO.T and CHO.T-t receptors occurred at similar antibody concentrations and with a similar time course, although the maximum level of CHO.T-t down-regulation (60%) was generally lower than the level of CHO.T down-regulation (80%). Pulse-chase labeling of these two cell types with [35S]methionine revealed that antibody treatment of both CHO.T and CHO.T-t cells resulted in a similar increase in the rate of degradation of mature receptor subunits. These results indicate that antibody-induced down-regulation of the insulin receptor in these cells can occur in the absence of various autophosphorylation sites of the receptor and that the mechanism of antibody-induced down-regulation is different from that for insulin.  相似文献   

18.
The human immune system contains T and B lymphocytes which respond in an antigen-specific manner to foreign antigens. These foreign antigens are recognized by multimeric receptors expressed on the cell surface of T and B lymphocytes. The subunits that make up the T and B cell receptor complexes have been identified, but their stoichiometries and positions in the complex remain to be resolved. Elucidation of the quaternary structures is necessary to understand the molecular basis of signal transduction events which follow antigen recognition and will contribute to the design of drugs that can modulate T and B cell responses. Here, I will discuss recent insights into the quaternary structures of the TCR and BCR and the striking similarities between the two, both in the structures of the subunits and in the overall quaternary structures. In addition, the intracellular assembly processes of these receptor complexes will be discussed, as well as the recent realization that these processes appear to be mediated by house-keeping proteins that transiently bind to partial TCR and BCR complexes. Similar to the role of BiP which mediates assembly processes of B cell immunoglobulins, a recently identified intracellular protein of 90 kD, called IP90, appears to play a role in TCR and BCR assembly processes. Analyses of the IP90 protein might contribute not only insight into the folding and assembly processes in lymphocytes, but also into those of newly synthesized proteins in many different cell types.  相似文献   

19.
The interaction of phytohaemagglutinin (PHA) with the human T lymphocyte antigen receptor (Ti) was explored. Nonidet-P40 lysates of surface-labelled HPB-ALL cells were immunoprecipitated with PHA, using a rabbit anti-(PHA)-serum, as well as clonotypic monoclonal antibodies (H1-2D4 and T40/25) and a rabbit antiserum (R-43) against Ti. One- and two-dimensional SDS-polyacrylamide electrophoresis under reducing and non-reducing conditions showed that both the clonotypic antibodies and PHA precipitated a disulphide cross-linked heterodimer having a mol. wt. of approximately 79 000 (unreduced) and a comprising subunits of mol. wts. approximately 50 000 and 39 000 (reduced). Further evidence that PHA binds Ti was obtained by (i) cross-immunodepletion with H1-2D4 and PHA; (ii) immunoprecipitation with H1-2D4 of a glycoprotein fraction specifically eluted from a PHA immunoprecipitate; (iii) immunoprecipitation with PHA of a solubilised H1-2D4 immunoprecipitate; (iv) 2-D (non-equilibrium pH gradient electrophoresis/SDS) analyses of H1-2D4 and PHA immunoprecipitates, indicated that H1-2D4 and PHA recognise coincident beta polypeptides. PHA also binds a Ti-like disulphide cross-linked heterodimer on tonsil lymphocytes and two other T-cell leukaemias (HUT-78 and J6). The data further suggest that PHA and R-43 recognise a subpopulation of Ti molecules on HPB-ALL cells that are not bound by H1-2D4, suggesting that there may be at least two forms of Ti. Similar experiments indicate that Concanavalin A (Con A) and wheat germ agglutinin (WGA) also probably bind Ti, whereas Helix pomatia agglutinin (HPA) does not.  相似文献   

20.
Therapeutic vaccination against cutaneous T cell lymphoma (CTCL) requires the characterization of cancer cell-specific CTL epitopes. Despite reported evidence for tumor-reactive cytotoxicity in CTCL patients, the nature of the recognized determinants remains elusive. The clonotypic TCR of CTCL cells is a promising candidate tumor-specific Ag. In this study, we report that the clonotypic and framework regions of the TCRs expressed in the malignant T cell clones of six CTCL patients contain multiple peptides with anchor residues fitting the patients' MHC class I molecules. We demonstrate that TCR peptide-specific T cells from the blood of healthy donors and patients can be induced to become cytotoxic effectors after repeated stimulation with 6 of 11 selected peptides with experimentally proven affinity for HLA-A*0201. Importantly, 4 of these 6 CTL lines reproducibly recognize and lyse autologous primary CTCL cells in MHC class I/CD8-dependent fashion. These tumoricidal CTL lines are directed against epitopes from V, hypervariable, and C regions of TCRalpha. We therefore conclude that recombined as well as V framework regions of the tumor cell TCRs contain predictable epitopes for CTL-mediated attack of CTCL cells. Our data further suggest that such peptides represent valuable tools for future anti-CTCL vaccination approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号