首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Juniperus woodlands are widely distributed in western North America. Few studies of seedling emergence, long-term survival, growth or mortality of the dominant Juniperus spp. in these woodlands have been carried out. Consequently, regeneration dynamics in these woodlands are poorly understood. Juniperus ashei is the dominant woody plant in the majority of woodland and savanna communities of the Edwards Plateau region in central Texas. We examined the emergence, mortality and growth of various spatial and temporal cohorts of J. ashei seedlings over an eight or nine-year period. Greatest emergence was found during the cool, mostly winter months and under the canopy of mature J. ashei trees. Emergence was significantly inversely related to temperature and significantly linearly related to rainfall, but only if the monthly rainfall and emergence were offset by one to four months. Greatest survival occurred below the J. ashei canopy, but greatest growth was at the canopy edge. Emerging seedlings were not from the current years seed crop, but from one or more previous years seed crops. Greatest mortality occurred mostly during the summer months and in the grassland habitat. There was a significant inverse logarithmic or exponential relationship between mean monthly temperature and mean monthly mortality. A large number of J. ashei seedlings or immature plants with reduced growth were found beneath the canopy of mature trees. These plants seem to serve as a seedling bank, providing the source of recruitment into the population should the overstory trees be removed. Survival of the two canopy cohorts with known emergence dates declined with time (negative exponential function) and was 1.0–3.4% after eight or nine years depending on the cohort. The pre-existing cohort seemed to have constant mortality (and presumably replacement), with about 8% of the population dying each year. Higher growth rates for seedlings were found at the edge of the established woodland canopy, which suggests that conditions in the edge habitat or possibly in canopy gaps are best for growth beyond the seedling stage.  相似文献   

2.
Two protocols were developed for the efficient regeneration of Sinningia speciosa from leaf explants via two developmental pathways. The first method involved formation of callus and buds, followed by subsequent root growth, in Murashige and Skoog medium (MS) containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 α-naphthalene acetic acid (NAA), with a regeneration efficiency of 99.0%. The second method involved producing callus and roots, followed by subsequent formation of buds, in MS medium supplemented with 1.0–5.0 mg l−1 NAA, and resulted in a regeneration efficiency of 90.4%. Our experiments indicate that the root-first pathway resulted in a lower plant regeneration efficiency. Through five continual generations using the buds-first method, a total of 215 regenerated plants were obtained in the last generation, and eight exhibited a phenotype we named tricussate whorled phyllotaxis (twp). Six of the regenerated twp variant plants maintained their tricussate whorled phyllotaxis phenotype, showing no other abnormalities, while one reverted to a wild type before flowering and another formed two rounds of sepals. Physiological analysis revealed that the twp plants responded differently than wild type to exogenous NAA and 2,3,5-triiodobenzoic acid (TIBA), while high-performance liquid chromatography (HPLC) analysis showed that the levels of endogenous indole-3-acetic acid (IAA) and gibberellin (GA) were lower in twp than wild-type plants. These results suggest that the formation of the twp mutant may be related to phytohormones and that the twp variant could be an important material for investigating the molecular mechanism of plant phyllotaxis patterning.  相似文献   

3.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid (NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment of this transformation system is invaluable for investigating fruit-tree-specific phenomena.  相似文献   

4.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

5.
We developed an alternative methodology for in vitro selection of transgenic Medicago truncatula cv. Jemalong plants using a bifunctional construct in which the coding sequences for the green fluorescent protein (GFP) and the β-glucuronidase protein (GUS) are fused. An Agrobacterium-mediated transformation protocol was used followed by regeneration via somatic embryogenesis in the dark, to avoid the synthesis and the consequent autofluorescence of chlorophyll. This method is a clear advantage over antibiotic and herbicide selection in which survival of non-transformed tissue is commonly reported, with the reassurance that all the somatic embryos selected as GFP positive are transformed. This was subsequently corroborated by the detection of GUS activity in leaves, stems and roots of the regenerated plants. Without antibiotic selection, and performing the embryo induction in the dark, it was possible to attest the advantage of using GFP as an in vivo detectable reporter for early embryo selection. The fusion with the GUS coding sequence provided additional evidence for the transformation of the previously selected embryos.  相似文献   

6.
Regeneration processes of riparian Robinia pseudoacacia forests after clear-cutting were investigated through dendroecological and microsatellite polymorphism analyses. Age determination of regenerated R. pseudoacacia trees based on the dendroecological analysis revealed that forests regenerating after clear-cutting were composed of trees that mostly established within a few years after clear-cutting. This suggests that the stimulus to form new shoots was evoked by clear-cutting but faded within a few years. Genet identification via the microsatellite polymorphism analysis showed that ramet trees belonging to the same genet were distributed in a cluster. Almost all trees regenerated asexually through new ramet formation on the cut stumps and residual horizontal roots after clear-cutting. AMOVA with microsatellite markers showed that among- and within-population variations contributed 6 and 94% to the total variation, respectively, suggesting that R. pseudoacacia trees in the forests were initially established from seeds dispersed randomly from mother trees in a wide area.  相似文献   

7.
Summary A method has been developed for the induction of adventitious shoots from leaf tissue of Echinacea pallida with subsequent whole-plant regeneration. Proliferating callus and shoot cultures were derived from leaf tissue explants placed on Murashige and Skoog medium supplemented with 6-benzylaminopurine and naphthaleneacetic acid combinations. The optimum shoot regeneration frequency (63%) and number of shoots per explant (2.3 shoots per explant) was achieved using media supplemented with 26.6 μM 6-benzylaminopurine and 0.11 μM naphthaleneacetic acid. Rooting of regenerated shoot explants was successful on Murashige and Skoog medium, both with and without the addition of indole-3-butyric acid. All plantlets survived acclimatization, producing phenotypically normal plants in the greenhouse. This study demonstrates that leaf tissue of E. pallida is competent for adventitious shoot regeneration and establishes a useful method for the micropropagation of this important medicinal plant.  相似文献   

8.
The effect of various hormonal combinations on regeneration of shoots and roots from meristem-derived callus of Crocus sativus L. and activities of antioxidant enzymes have been studied. The most efficient regeneration occurred with 1.0 mg dm−3 1-naphthaleneacetic acid (NAA) + 1.0 mg dm−3 thidiazuron and 1.0 mg dm−3 NAA + 2.0 mg dm−3 kinetin. For sprouting, regenerated shoot were subcultured on Murashige and Skoog medium containing 1.0 mg dm−3 NAA + 1.0 mg dm−3 benzylaminopurine (BAP). Protein content and superoxide dismutase activity decreased in regenerated shoots and roots and increased in sprouting shoots, while catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO) activities increased during organogenesis and decreased in sprouting shoots. High CAT and PPO activities were detected in regenerated roots, whereas high POX activity was observed in regenerated shoot.  相似文献   

9.
The aim of this study was to establish a protocol for the efficient production of flax plants of microspore origin. The results were compared to those obtained for plants regenerated from somatic explants from hypocotyls, cotyledons, leaves, stems and roots. All the plants obtained during the experiments were regenerated from callus that was grown for periods from a few weeks to a few months before the regeneration was achieved. Anther cultures were less effective in plant regeneration than somatic cell cultures. However, regenerants derived from anther cells showed valuable breeding features, including increased resistance to fungal wilt. The age of the donor plants and the season they grew in had a noticeable effect on their anther callusing and subsequent plant regeneration. Low temperature had a negative effect and dark pre-treatment a positive effect on callusing and plant regeneration. Different media were most effective for callus induction, shoot induction and rooting. For callus induction two carbon sources (2.5% sucrose and 2.5% glucose) were most effective; for shoots, only sucrose at lower concentration (2%) was effective. Rooting was most efficient in 1% sucrose and reduced (50%) mineral concentration in the medium. It was found that the length of in vitro cultivation significantly increases the ploidy and affects such features as regenerant morphological characteristics, petal colour, and resistance to Fusarium oxysporum-induced fungal wilt. The established plant regeneration system provides a basis for the creation of transgenic flax.Abbreviations BAP 6-Benzyl-aminopurine - IAA Indole-3-acetic acid - MS Murashige and Skoog medium - NAA -Naphthalene-acetic acidCommunicated by H. Lörz  相似文献   

10.
Frost damage and re-foliation are seldom quantified for forest species, but are of ecological and evolutionary importance. This study of Aesculus glabra (Ohio buckeye) in a deciduous forest remnant in Illinois, USA, quantified frost damage to leaves and flowers after sub-freezing temperatures in April 2007. It also documented re-foliation and later growth, reproduction, and survival in 2007–2009 for the 355 study individuals of four life stages growing 0–200 m from the forest edge. Life stages differed in % leaf damage because of differences in phenology during the frost. Large saplings with fully expanded, immature leaves had higher % damage and lower % canopy fullness after re-foliation than smaller saplings with partially or fully mature leaves and canopy trees undergoing shoot expansion with folded leaflets. Percent damage increased for saplings closer to edges. Large saplings with heavier frost damage to leaves had partial re-foliation in deep shade, lower % canopy fullness, earlier senescence, a shorter growing season, and greater death of next year’s buds. By 2008, large saplings with greater damage in 2007 had more dead branches and lower % canopy fullness. By 2009, 11% of large saplings had died. In 2007, frost damaged no flowers, but final fruit crop size was negatively related to % leaf damage. Edge trees with total leaf damage aborted all fruits. The frost event differentially affected individuals in their length and time of growing season, energy budget, and, ultimately, reproduction, and survival. The population’s local-scale demography and spatial pattern also changed as large saplings died.  相似文献   

11.
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically similar to Black Mitcham parents.  相似文献   

12.
A rapid regeneration protocol for proembryos of Phaseolus angustissimus as young as 1 day after pollination (DAP) involving pod culture for 1 week followed by embryo culture for 2 weeks and embryo germination for 1 or 2 weeks is provided. Optimization of the media was conducted with pods collected 3 DAP. The best pod culture medium was composed of basal medium [(Phillips and Collins 1979) salts with (Geerts et al. 2001) vitamins], 1000 mg l−1 glutamine, 1000 mg l−1 casein hydrolysate, 3% sucrose and 0.5% agar. Embryo culture medium consisted of basal medium with 500 mg l−1 glutamine, 250 mg l−1 casein hydrolysate, 1.9 μM ABA, 3% sucrose and 0.5% bacto-agar. Embryos developed into plantlets on germination medium containing basal medium with 0.25 μM BA, 3% sucrose and 0.7% bacto-agar. Fertile, normal plants were recovered from direct embryogenesis and from micrografted embryo-derived shoots. Embryos obtained from pods collected 3 DAP regenerated plantlets at a rate of 29.3%, while embryos from pods collected 2 DAP and 1 DAP regenerated at rates of 20.2 and 4%, respectively. A second accession of P. angustissimusregenerated at a rate of 26.2%. Using this 5-week protocol for P. vulgaris resulted in a plantlet regeneration rate of 12.5%.  相似文献   

13.
The population structure and dynamics of Castanopsis cuspidata var. sieboldii were studied to evaluate vegetative and sapling regeneration in an old-growth, evergreen broad-leaved forest exposed to low-severity typhoon disturbances by annual typhoons on the Tsushima Islands in Japan. The density of individuals 5cm d.b.h. was 38.0ha–1 in 1990; 7.9% were multiple-stemmed individuals. Over the 7-year study period (1990–1997), the number of individuals decreased, although the number of stems increased. Over 30% of apparently dead individuals were reconstituted by sprouting stems. Compared with sprout regeneration, sapling regeneration rarely occurred and was only observed in canopy gaps. Most individuals had at least one sprout shoot (H 30cm, d.b.h. <5cm), and the number and size of sprout shoots increased as the size of the individuals increased. During the study period, larger individuals with stem breakage tended to produce sprout stems. The density of saplings was 1074ha–1 and they were more abundant in canopy gaps than under closed canopies, but large saplings were very rare even in canopy gaps. The population of C.cuspidata var. sieboldii consisted primarily of single-stemmed individuals with a few multiple-stemmed individuals providing a sprout bank. Larger individuals responded to the low severity typhoon disturbances and formed sprout stems. Although many saplings were observed, regeneration occurred more often by sprout formation than by growth of saplings. Thus, sprout regeneration is an important mode of regeneration, which allows this pioneer-like species to maintain its population in this forest.  相似文献   

14.
Mangrove partitioning and storage of macronutrients and trace metals were examined in different arid coastal settings of Western Australia. Total living biomass in three Rhizophora stylosa forests, which ranged from 233 to 289 t DW ha-1, was significantly greater than biomass in three Avicennia marina forests (range: 79-155 t DW ha-1). Although prop roots and stems were the largest single tree components for R. stylosa and A. marina, respectively, most nutrients were stored in leaves and living roots of both species. However, only a small fraction of the total nutrient pool was vested in tree biomass; the vast bulk was in soils. A large below-ground pool of dead fine roots was identified at all stands, equivalent to 36-88% DW of total living tree biomass. The amount of Ca, S, Cl, Na, Si, Fe, Mn, Zn, B, Mo and Cu vested in dead roots of both species was greater than in the total living tree biomass. The proportion of Fe and S vested in live and dead roots was exceptionally large, consistent with previous evidence of metal plaques on mangrove roots. Sulphur, iron and zinc in dead roots of both species constituted the bulk of these metals. R. stylosa trees preferentially accumulated more Mg, S, Cl, Na, Si, Fe, Mn, B and Mo than A. marina trees. Proportionally greater storage of P, N, Ca, K, Cu and Zn occurred in two of the three A. marina forests. Foliar concentrations of Mg, S, Mn, B and Mo in mangrove leaves were at the high end of the range reported for other tropical trees, but other elemental concentrations were at the low or mid-range. Nitrogen limitation in these forests is implied by a positive correlation between total tree N and net canopy production and by a lower percentage of ecosystem N in tree biomass as compared with other forests. Unlike terrestrial forests where a large proportion of nutrient capital is vested in floor litter, most elements in these mangrove forests are stored in dead roots. A large reservoir of dead roots below the forest floor may serve as a conservation mechanism, particularly in such arid oligotrophic environments.  相似文献   

15.
Pinus sylvestris and Salix dasyclados, which differ in leaf longevity, were compared with respect to four aspects of photosynthetic light use and response: high light acclimation, photoinhibition resistance and recovery, lightfleck exposure and use and chloroplast acclimation across leaves. The first two aspects were examined using seedlings under controlled conditions and the other two were tested using trees in the field. When exposed to high light, shade leaves of Pinus acclimated completely, achieving the same photosynthetic capacities as sun leaves, whereas shade leaves of Salix did not reach sun leaf capacities although the absolute magnitude of their acclimation was larger. Shade leaves of Pinus were also more resistant to photoinhibition than those of Salix. Much of the direct light supplied within the canopy was in the form of rapid fluctuations, lightflecks, for Pinus and Salix alike. They exploited short lightflecks with similar efficiency. The greater proportion of diffuse light in the canopy for Pinus than Salix seems to lead to a lesser degree of differential intra-leaf acclimation of chloroplasts, in turn leading to lower efficiency of photosynthesis under unilateral light as reflected by a lower convexity, rate of bending, of the light–response curve. The differences in light use and responses are discussed in relation to possible differences in characteristics of the long and short-lived leaf.  相似文献   

16.
17.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis.  相似文献   

18.
A simple and efficient protocol for high frequency plant regeneration of a grain legume grasspea (Lathyrus sativus L.) is described. Of different explant types tested epicotyl segments were most responsive. Murashige and Skoog’s (1962) medium augmented with 17.76 µM 6-benzyladenine + 10.74 µM α-naphthaleneacetic acid showed the highest percentage of direct shoot regeneration. Among cultivars IC-120487 showed the highest regeneration frequency (80 %) with maximum shoot numbers (8.2 shoots per explant) and maximum average shoot length (4.1 cm). About 78 % of the regenerated shoots were rooted in half-strength MS medium containing 2.85 µM indole-3-acetic acid. After primary hardening the plantlets were established in soil with a survival rate of 75 %.  相似文献   

19.
Acacia spp. are among the most serious plant invaders worldwide, and Acacia longifolia specifically causes problems in Portugal. In this study, we evaluated the impacts of A. longifolia invasion on community structure, light climate, plant diversity and regeneration in pine forests and open stabilized dunes in northern and southern Portugal. Having the growth form of a small tree or shrub, between 1 and 8 m tall, A. longifolia tended to dominate the middle stratum of forests and to share dominance in the upper stratum of open dunes. The presence of A. longifolia was associated with a decreased canopy cover in the lower stratum of all studied habitats, and at some sites with a significantly increased leaf area index and reduced light intensity in the understory. Species number and diversity were reduced in some habitats by up to 50% in invaded compared to non-invaded areas. Furthermore, in forest habitats, A. longifolia seedlings were facilitated by proximity to an adult A. longifolia while the establishment and growth of native seedlings was negatively impacted. The replacement of drought tolerant native species by the water spending invader, A. longifolia, may have serious implications for ecosystem functioning, especially during the prolonged drought periods predicted to occur in Portugal in the future.  相似文献   

20.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号