首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub-clinically affected. SOES and DCH made a few follow-up studies in some districts to know their overall situations after 9 to 18 years of their first exposure. The overall conclusion from these follow-up studies is (a) villagers are now more aware about the danger of drinking arsenic contaminated water (b) villagers are currently drinking less arsenic contaminated water (c) many villagers in affected village died of cancer (d) arsenic contaminated water is in use for agricultural irrigation and arsenic exposure from food chain could be future danger. Since at present more information is coming about health effects from low arsenic exposure, Bangladesh Government should immediately focus on their huge surface water management and reduce their permissible limit of arsenic in drinking water.  相似文献   

2.
Hydrocarbon degradation in soils and methods for soil biotreatment   总被引:15,自引:0,他引:15  
The cleanup of soils and groundwater contaminated with hydrocarbons is of particular importance in minimizing the environmental impact of petroleum and petroleum products and in preventing contamination of potable water supplies. Consequently, there is a growing industry involved in the treatment of contaminated topsoils, subsoils, and groundwater. The biotreatment methodologies employed for decontamination are designed to enhance in situ degradation by the supply of oxygen, inorganic nutrients, and/or microbial inocula to the contaminated zone. This review considers the fate and effects of hydrocarbon contaminants in terrestrial environments, with particular reference to the factors that limit biodegradation rates. The potential efficiencies, advantages, and disadvantages of biotreatment techniques are discussed and the future research directions necessary for process development are considered.  相似文献   

3.
Iron flocculate or “floc” deposits are commonly observed in groundwater discharge zones downgradient of unlined solid waste landfills. Bright orange in color, and composed predominantly of amorphous iron oxyhydroxides, these deposits generally have been regarded as aesthetically undesirable but environmentally benign. In recent years, there has been increased awareness of the widespread occurrence of elevated arsenic in reducing groundwaters. Research carried out at municipal landfills in New England indicates that naturally occurring arsenic exhibits redox-mediated mobility and is frequently associated with reduced iron as a dissolved constituent in leachate-impacted groundwaters. If iron precipitates in discharge zones where reduced groundwaters are exposed to atmospheric oxygen, it follows that arsenic may co-precipitate with iron in these areas. To assess the prevalence of arsenic as a constituent of iron floc deposits, samples were collected at seven landfills and at one natural mineral spring in the lower Hudson Valley of southeastern New York State. At six of seven landfill sites, arsenic concentrations exceeded 33 mg/kg, which represents the “severe effects level” for aquatic life as identified in New York State regulatory guidance for screening contaminated sediments. These results indicate that arsenic contamination is of potential concern for downgradient of landfills wherever iron-stained leachate discharges are observed. Sampling and analysis of iron flocs associated with such leachates could also provide a means of identifying landfills that may present risks of arsenic contamination to downgradient water supply wells, especially in cases where groundwater monitoring wells are not available for sampling.  相似文献   

4.
Chakraborty S  Ray M  Ray S 《Tissue & cell》2012,44(3):151-155
The freshwater wetland systems of India is a complex habitat that supports a broad range of diverse species including molluscs, which play an important role in supplementing third world countries. In the arsenic affected flood plains of West Bengal, a huge amount of arsenic laden groundwater is raised for the purpose of irrigation. Agricultural runoffs and flood water movement during monsoon may cause accumulation of arsenic in the adjacent freshwater aquifers, the common habitat of Lamellidens marginalis (Mollusca; Bivalvia; Eulamellibranchiata), a filter feeder, sensitive to altered environmental conditions. To examine the nature of toxicity induced by inorganic arsenic on both the haemocytes and tissues of the invertebrate heart, the animals were exposed to five different sublethal concentrations of sodium arsenite for a maximum time span of 30 days in vitro. Significant differences were recorded in the total haemocyte count, biochemical and histopathological parameters of the heart of L. marginalis under the arsenic induced stress. Our observations indicate the development of profound haematopoietic and cardiac stress under the sublethal inorganic arsenite exposure and it also implies the nature of risk imposed on the freshwater aquatic ecosystem under potential arsenic contamination.  相似文献   

5.
In addition to providing potable drinking water, U.S. water systems are critical to the maintenance of many vital public services, such as fire suppression and power generation. Disruption of these systems would produce severe public health and safety risks, as well as considerable economic losses. Thus, water systems have been designated as critical to national security by the U.S. government. Previous outbreaks of waterborne disease have demonstrated the vulnerability of both the water supply and the public's health to biological contamination of drinking water. Such experiences suggest that a biological attack, or even a credible threat of an attack, on water infrastructure could seriously jeopardize the public's health, its confidence, and the economic vitality of a community. Despite these recognized vulnerabilities, protecting water supplies from a deliberate biological attack has not been sufficiently addressed. Action in this area has suffered from a lack of scientific understanding of the true vulnerability of water supplies to intentional contamination with bioweapons, insufficient tools for detecting biological agents, and a lack of funds to implement security improvements. Much of what is needed to address the vulnerability of the national water supply falls outside the influence of individual utilities. This includes developing a national research agenda to appropriately identify and characterize waterborne threats and making funds available to implement security improvements.  相似文献   

6.
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth.  相似文献   

7.
Wastewater reclamation is getting greater attention as an alternative to conventional approaches to wastewater treatment and water supply due to increasing water stress coupled with more stringent water quality limitation for discharge of treated wastewater. Among the few technologies adopted in the field for wastewater reclamation, constructed wetlands have been used to reclaim both primary and secondary treated wastewater in regions with arid and humid climates. This paper summarizes the widely adopted guidelines that need to be considered when designing constructed wetlands for wastewater reclamation, discusses the capacity of wetland treatment systems for water reuse while assessing the status of full-scale constructed wetlands designed for wastewater reclamation, and develops contaminant loading charts as a design tool based on the performance of existing full-scale constructed wetlands deployed for wastewater reclamation. It is evident that constructed wetland systems provide a viable means to treat wastewater to the levels required for low-quality reuses such as restricted irrigation and impoundment. It is challenging for constructed wetlands to consistently meet microbiological guidelines for high-quality reuses such as unrestricted agricultural and urban reuses. Wastewater reclaimed through constructed wetlands is used mainly for agricultural and landscape irrigation, groundwater recharge, indirect potable reuse, and environmental reuse. Surface area and hydraulic loading rate of constructed wetlands to be deployed for wastewater reclamation can be estimated with contaminant loading charts derived from monitoring data of existing full-scale operations.  相似文献   

8.
《农业工程》2021,41(4):285-295
The main objective of this study is to identify the potable groundwater zones in Adyar River Basin (ARB) that forms the major river of Chennai metropolitan and significantly contributes to the demands of this big city's water supply. Twenty eight groundwater samples were collected during postmonsoon and premonsoon seasons in 2016 from the wells of ARB which is downstream of Chembarambakkam Lake, which supplies drinking water to Chennai metropolitan city. All the water samples were analyzed using Portable meter and Ion Chromatography for physico-chemical parameters and major ions such as pH, TDS, Ca, Mg, Na, K, Cl, HCO3, SO4 and NO3. The analytical results were compared with the WHO, USEPA & BIS guideline values and reported that some of the samples exceeds these guideline values for drinking water quality. Spatial distribution maps were prepared to identify the potable groundwater available regions based on these water quality parameters. Piper and Gibbs plots are generated to identify the nature and type of groundwater with processes controls the groundwater chemistry. Principal component analysis was done to interpret the possible sources of chemical compounds present in the groundwater. To precisely delineate the potable groundwater region in ARB, Water Quality Index (WQI) approach is employed with the basic water quality parameters and spatial distribution maps were prepared using GIS for the obtained indexes. It is found that only 10.71% and 17.86% of the study area groundwater is within the excellent water quality for drinking during postmonsoon and premonsoon respectively, whereas 42.86% in postmonsoon and 14.29% in premonsoon is found as poor quality groundwater for drinking. The groundwater of the northwestern and western part of ARB is under very poor and unsuitable category for drinking in both the seasons. This region of ARB is recommended for implementation of artificial groundwater recharging to improve the groundwater quality and make it suitable for drinking.  相似文献   

9.
Reclaimed water use is an important component of sustainable water resource management. However, there are concerns regarding pathogen transport through this alternative water supply. This study characterized the viral community found in reclaimed water and compared it with viruses in potable water. Reclaimed water contained 1000-fold more virus-like particles than potable water, having approximately 108 VLPs per millilitre. Metagenomic analyses revealed that most of the viruses in both reclaimed and potable water were novel. Bacteriophages dominated the DNA viral community in both reclaimed and potable water, but reclaimed water had a distinct phage community based on phage family distributions and host representation within each family. Eukaryotic viruses similar to plant pathogens and invertebrate picornaviruses dominated RNA metagenomic libraries. Established human pathogens were not detected in reclaimed water viral metagenomes, which contained a wealth of novel single-stranded DNA and RNA viruses related to plant, animal and insect viruses. Therefore, reclaimed water may play a role in the dissemination of highly stable viruses. Information regarding viruses present in reclaimed water but not in potable water can be used to identify new bioindicators of water quality. Future studies will need to investigate the infectivity and host range of these viruses to evaluate the impacts of reclaimed water use on human and ecosystem health.  相似文献   

10.
PROBLEM STATEMENT: Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. WORKSHOP OUTCOMES: An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. IMPACT: This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.  相似文献   

11.
Direct viable counting of metal-resistant bacteria (DVCMR) has been found to be useful in both enumerating and differentiating metal-resistant and metal-sensitive strains of bacteria. The DVCMR bioassay was used to detect effects of low and high concentrations of arsenic and arsenicals on bacterial populations in groundwater. The level of resistance of the bacterial populations to arsenate was determined by the DVCMR bioassay, and the results showed a linear correlation with the total arsenic concentrations in the monitoring well water samples; no correlation was observed by culture methods with the methods employed. Bacteria resistant to 2,000 micrograms of arsenate per ml were isolated from all monitoring well water samples studied. Strains showed similar antibiotic and heavy-metal profiles, suggesting that the arsenic was not a highly selective pressure for arsenic alone. The monitoring well water samples were amended with arsenate and nutrients to determine the biotransformation mechanisms involved. Preliminary results suggest that bacteria indigenous to the monitoring well water samples did not directly transform, i.e., precipitate or volatilize, dissolved arsenic. It was concluded that arsenic contamination of the groundwater can be monitored by the DVCMR bioassay.  相似文献   

12.
Direct viable counting of metal-resistant bacteria (DVCMR) has been found to be useful in both enumerating and differentiating metal-resistant and metal-sensitive strains of bacteria. The DVCMR bioassay was used to detect effects of low and high concentrations of arsenic and arsenicals on bacterial populations in groundwater. The level of resistance of the bacterial populations to arsenate was determined by the DVCMR bioassay, and the results showed a linear correlation with the total arsenic concentrations in the monitoring well water samples; no correlation was observed by culture methods with the methods employed. Bacteria resistant to 2,000 micrograms of arsenate per ml were isolated from all monitoring well water samples studied. Strains showed similar antibiotic and heavy-metal profiles, suggesting that the arsenic was not a highly selective pressure for arsenic alone. The monitoring well water samples were amended with arsenate and nutrients to determine the biotransformation mechanisms involved. Preliminary results suggest that bacteria indigenous to the monitoring well water samples did not directly transform, i.e., precipitate or volatilize, dissolved arsenic. It was concluded that arsenic contamination of the groundwater can be monitored by the DVCMR bioassay.  相似文献   

13.
Life cycle assessment of the supply and use of water in the Segura Basin   总被引:1,自引:0,他引:1  

Purpose

In this paper, the combined life cycle assessment of the water supply alternatives and the water use in a water-stressed watershed in Spain (the Segura) is presented. Although it is a dry area, agriculture and tourism are very profitable sectors with high water demands. Thus, external water supply alternatives including water transfers or desalination partly balance the reduced natural water availability to cover the existing water demands.

Methods

In order to integrate both the impact of water supply alternatives and water use, the ReCiPe method was used to assess the water supply alternatives at the endpoint approach with the three specific damage categories: human health, ecosystem diversity and damage to resources availability. At the same time, the water use impact was calculated and grouped in the same categories. Firstly, one average cubic metre of water at the user's gate in the Segura Basin area was taken as the functional unit. As irrigation and drinking water constitute the principal water uses, it was considered that to separately analyse 1 m3 used for irrigation and 1 m3 destined to drinking purposes could provide interesting information. Then, these units were also considered as functional units. Then, three additional hypothetical scenarios were introduced: two of them defined by a strong variability in rainfall and the third by a sudden diminution of water transferred from a neighbouring basin.

Results and discussion

Regarding the facilities to provide 1 m3 at user's gate in the Segura Basin, results showed that the seawater desalination plants obtained the highest score for all the three considered damage categories, followed by the Tajo–Segura water transfer, the groundwater, the local surface waters and the water reuse. In relation to the water use impact, the damage to ecosystems diversity was very representative with respect to the one coming from water supply infrastructures because irrigation constituted 85 % of the total demand.

Conclusions

The diversification of water supply alternatives within a region considerably increases any environmental impact, primarily stemming from the additional required infrastructures, and frequently from the use of external water sources for their uses. Thus, users and policy makers should be aware of the costs that a guaranteed water supply entails. In water-scarce territories, the use of external solutions such as desalination or water transfer either increase the environmental impact due to their high energy consumption or they are limited by existing climate variability. Therefore, they cannot be considered as the definite solution, which would be a balance between renewable sources and existing demands.  相似文献   

14.
Groundwater plays a central role in the hydrological cycle and represents the utmost natural resource for human consumption and activities on a global scale. Therefore, any source of contamination of either geogenic or anthropogenic origin may provide a serious environmental health threat. Within the long list of organic and inorganic groundwater contaminants, arsenic, a toxic element retrieved in air, soils, rocks, waters and organisms, can occur at high concentrations in aquifers representing an issue of worldwide concern. Over the past years, research efforts aimed to elucidate the microorganisms and mechanisms involved in the biogeochemical cycling of this element. An emerging challenge is to identify and exploit microbial metabolic potentialities for arsenic-contaminated water treatment. The objective of this review is to outline the existing knowledge about ecology, biochemistry and genomics of arsenic-related microorganisms, with particular reference to their distribution and their capabilities to oxidize As(III) in groundwater. Moreover, a broad evaluation of the application potentialities of microbiological processes suitable for treatment strategies of arsenic-contaminated groundwater is provided.  相似文献   

15.
Intensive agriculture and industrial activities have resulted in contamination in rivers and groundwater quality, which threatens human health. In this study, we used comprehensive physiochemical indicators to assess the quality of groundwater used for drinking and irrigation in addition to the potential risks to local residents in a riverbank filtration site. Human health risks through drinking water intake and dermal contact were also estimated. Moreover, we analyzed the spatial distribution regularities of health risk values in a riverbank filtration site. The assessment results revealed that NH4–N, NO2–N, F?, Mn, and As are main contaminants affecting groundwater quality and that 62% of the total samples is suitable for a variety of purposes. All groundwater in the study area is suitable for irrigation based on the sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Na percentage (%Na), and U.S. Salinity Laboratory (USSL) and Wilcox diagrams. The health risk assessment suggests that residents in the study area are at high health risk, and women and children face higher risk than men in both non-carcinogenic and carcinogenic risks. The spatial distribution regularities of health risk values suggest that the human health risk value of each groundwater sample is different in the study area and has certain regularity. Therefore, effective measurements must be taken to address the groundwater contamination and to reduce the human health risks.  相似文献   

16.
全元  刘昕  王辰星  单鹏  董孟婷  唐明方  吴钢 《生态学报》2016,36(19):6012-6018
以南水北调工程为例的输水管道工程在解决我国水资源供需矛盾和地域分配不均的问题中发挥着重要作用,输水管道工程的建设在产生巨大社会、经济、生态效益的同时,也给工程建设区域、调水相关区域脆弱的生态环境带来新的问题。工程建设的环境影响评价往往关心工程建设、运行时期对相关区域内主要环境要素的影响、响应及评价,而对工程建设相关的关键生态系统的影响关注较小。而南水北调等输水管道工程是与水密切相关的国家级大型工程,对工程建设区域、影响区域的水生生态系统产生较大的影响,如何科学、定量地评价输水工程对关键生态系统的影响是输水工程建设管理人员关注的热点之一。基于对生态需水评价理论与方法的总结及输水工程生态影响定量评价难点的分析,对生态需水与水生生态系统健康之间相辅相成的关系进行研究,提出了将生态需水引入输水工程生态影响评价的技术路径与评价模型。以南水北调中线工程为例,对其影响范围内的生态需水量进行评价,进而判断工程建设运行对相关区域关键生态系统的影响。  相似文献   

17.
State and management of wetlands in Bangladesh   总被引:1,自引:0,他引:1  
Wetlands are a vital link between land and water in Bangladesh. A majority of the people of Bangladesh are critically dependent on wetlands. In this paper, the values of wetlands, causes and effects of wetlands degradation, as well as the present wetlands management approach, are analyzed and recommendations for wetlands management are suggested based on participatory rural appraisal (PRA), field visit, personal experience, and existing literature and information. Wetlands play a crucial role in maintaining the ecological balance of ecosystems, but wetlands habitat of Bangladesh is under constant threat due to increase of population, intensive agriculture, overfishing, siltation, pollution, ill-planned infrastructures, lack of institutional coordination, lack of awareness, etc. As a result biodiversity is reducing, many species of flora and fauna are threatened, wetlands-based ecosystem is degenerating, and the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and cultural values are affected. Wetlands management is not addressed separately in water management activities of Bangladesh. In order to balance human needs and wetlands conservation, a mainly community-based wetlands management approach has been taken in Bangladesh, but this is not enough to prevent the degradation of wetlands. Therefore, Bangladesh now needs a comprehensive strategy combining political, economic, social, and technological approaches to stop further degradation of wetlands. Therefore, wetlands management should be incorporated into a system of integrated land and water use and, indeed, into the socioeconomic system of the country. Policies, strategies, and management plans for sustainable use and conservation of wetlands of Bangladesh must be based on solid knowledge and understanding of their ecological and socioeconomic functions and processes.  相似文献   

18.
The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability . Here, we compare wetland conditions between two 30‐year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland ‐ dependent species.  相似文献   

19.
The widespread occurrence of high inorganic arsenic in natural waters is attributed to human carcinogen and is identified as a major global public health issue. The scale of the problem in terms of population exposure (36 million) and geographical area coverage (173 × 103 Km2) to high arsenic contaminated groundwater (50–3200 gL–1) compared to the National drinking water standard (50 gL–1) and WHO recommended provisional limit (10 gL–1) is greatest in the Holocene alluvium and deltaic aquifers of the Bengal Delta Plain (Bangladesh and West Bengal, India). This large-scale 'natural' high arsenic groundwater poses a great threat to human health via drinking water. Mobilization, metabolism and mitigation issues of high arsenic groundwater are complex and need holistic approach for sustainable development of the resource. Mobilization depends on the redox geo-chemistry of arsenic that plays a vital role in the release and subsequent transport of arsenic in groundwater. Metabolism narrates the biological response vis-à-vis clinical manifestations of arsenic due to various chemical and biological factors. Mitigation includes alternative source for safe drinking water supply. Drinking water quality regulatory standards as well as guidelines are yet to cover risk assessments for such metal toxicity. Lowering of the ingested inorganic arsenic level and introduction of newer treatment options (implementation of laterite, the natural material) to ensure safe water supply (arsenic free and/or low arsenic within permissible limit) are the urgent need to safe guard the mass arsenic poisoning and internal arsenic related health problems.  相似文献   

20.
生态系统服务的供需平衡对实现可持续发展至关重要。为了更好地了解过去气候变化和社会经济发展对生态系统服务的影响,并对未来不同气候和社会经济发展情景做出正确响应,有必要对生态系统服务的供需变化进行系统的评估和预测。研究对我国西南地区2000、2010、2015年的水源涵养、食物生产和固碳3项生态系统服务的供给和需求进行了定量的空间评估,然后基于IPCC(Intergovernmental Panel on Climate Change)提出的社会经济发展和气候变化联合情景框架,即SSP-RCP情景(Shared Socio-economic Pathways-Representative Concentration Pathways),对此3项生态系统服务在未来2035年和2050年的供给和需求进行了SSP1-RCP2.6、SSP2-RCP4.5、SSP4-RCP6.0和SSP5-RCP8.5 4个情景下的预测。结果显示,西南地区水源涵养和固碳服务的供给和需求具有显著的空间不匹配特征,且其需求从2000—2015年分别增长了11.49%和252.41%。根据SSP-RCP情景预测结果,水源...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号