首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The genes defining multiple B mating types in the wood-rotting mushroom Schizophyllum commune are predicted to encode multiple pheromones and pheromone receptors. These genes are clustered in each of two recombinable and independently functioning loci, Bα and Bβ. A difference in specificity at either locus between a mated pair of individuals initiates an identical series of events in sexual morphogenesis. The Bα1 locus was recently found to contain genes predicted to encode three lipopeptide pheromones and a pheromone receptor with a seven-transmembrane domain. These gene products interact in hetero-specific pairs, the pheromone of one Bα specificity with the receptor of any one of the other eight Bα specificities, and are likely to activate a signaling cascade similar to that known for mating in Saccharomyces cerevisiae. We report here that the Bβ1 locus also contains at least three pheromone genes and one pheromone receptor gene, which function similarly to the genes in the Bα1 locus, but only within the series of Bβ specificities. A comparison of the DNA sequences of the Bα1 and Bβ1 loci suggest that each arose from a common ancestral sequence, allowing us to speculate about the evolution of this unique series of regulatory genes.  相似文献   

3.
Halsall JR  Milner MJ  Casselton LA 《Genetics》2000,154(3):1115-1123
The B mating type locus of the basidiomycete Coprinus cinereus encodes a large family of lipopeptide pheromones and their seven transmembrane domain receptors. Here we show that the B42 locus, like the previously described B6 locus, derives its unique specificity from nine multiallelic genes that are organized into three subgroups each comprising a receptor and two pheromone genes. We show that the three genes within each group are kept together as a functional unit by being embedded in an allele-specific DNA sequence. Using a combination of sequence analysis, Southern blotting, and DNA-mediated transformation with cloned genes, we demonstrate that different B loci may share alleles of one or two groups of genes. This is consistent with the prediction that the three subgroups of genes are functionally redundant and that it is the different combinations of their alleles that generate the multiple B mating specificities found in nature. The B42 locus was found to contain an additional gene, mfs1, that encodes a putative multidrug transporter belonging to the major facilitator family. In strains with other B mating specificities, this gene, whose functional significance was not established, lies in a region of shared homology flanking the B locus.  相似文献   

4.
5.
The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.  相似文献   

6.
The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of and subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the sublocus, but unlike the multiallelic sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.  相似文献   

7.
The Aα locus is one of four master regulatory loci that determine mating type and regulate sexual development in Schizophyllum commune. We have made a plasmid containing a URA1 gene disruption of the Aα Y1 gene. Y1 is the sole Aα gene in Aα1 strains. We used the plasmid construction to produce an Aα null (i.e., AαΔ) strain by replacing the genomic Y1 gene with URA1 in an Aα1 strain. To characterize the role of the Aα genes in the regulation of sexual development, we transformed various Aα Y and Z alleles into AαΔ strains and examined the acquired mating types and mating abilities of the transformants. These experiments demonstrate that the Aα Y gene is not essential for fungal viability and growth, that a solitary Z Aα mating-type gene does not itself activate development, that Aβ proteins are sufficient to activate the A developmental pathway in the absence of Aα proteins and confirm that Y and Z genes are the sole determinants of Aα mating type. The data from these experiments support and refine our model of the regulation of A-pathway events by Y and Z proteins.  相似文献   

8.
In the phytopathogenic fungus Ustilago hordei, one locus with two alternate alleles, MAT-1 and MAT-2, controls mating and the establishment of the infectious dikaryon (bipolar mating). In contrast, for U. maydis, these functions are associated with two different gene complexes, called a and b (tetrapolar mating); the a complex has two alternate specificities, and the b gene complex is multiallelic. We have found homologs for the b gene complex in U. hordei and have cloned one from each mating type using sequences from one bEast allele of U. maydis as a probe. Sequence analysis revealed two divergent open reading frames in each b complex, which we called bW (bWest) and bE (bEast) in analogy with the b gene complex of U. maydis. The predicted bW and bE gene products from the two different mating types showed approximately 75% identity when homologous polypeptides were compared. All of the characterized bW and bE gene products have variable amino-terminal regions, conserved carboxy-terminal regions, and similar homeodomain motifs. Sequence comparisons with the bW1 and bE1 genes of U. maydis showed conservation in organization and structure. Transformation of the U. hordei b gene complex into a U. hordei strain of opposite mating type showed that the b genes from the two mating types are functional alleles. The U. hordei b genes, when introduced into U. maydis, rendered the haploid transformants weakly pathogenic on maize. These results indicate that structurally and functionally conserved b genes are present in U. hordei.  相似文献   

9.
Hicks JB  Herskowitz I 《Genetics》1977,85(3):373-393
The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HMa and hmα loci are blocs of unexpressed α regulatory information, and HMα and hma loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.  相似文献   

10.
We have identified the seven genes that constitute the A43 mating-type factor of Coprinus cinereus and compare the organisation of A43 with the previously characterised A42 factor. In both, the genes that trigger clamp cell development, the so-called specificity genes, are separated into α and β loci by 7 kb of noncoding sequence and are flanked by homologous genes α-fg and β-fg. The specificity genes are known to encode two classes of dissimilar homeodomain (HD1 and HD2) proteins and have different allelic forms which show little or no cross-hybridisation. By partial sequencing we identified a divergently transcribed HD1 (a1-2) and HD2 (a2-2) gene in the A43 α locus. a2-2 failed to elicit clamp cell development in three different hosts, suggesting that it is non-functional. a1-2 elicited clamp cells in an A42 host that has only an HD2 gene (a2-1) in its α locus, thus demonstrating that the compatible Aα mating interaction is between an HD1 and an HD2 protein. The A43 β locus contains three specificity genes, the divergently transcribed HD1 and HD2 genes b1-2 and b2-2 and a third HD1 gene (d1-1) that was shown by hybridisation and transformation analyses to be functionally equivalent to d1-1 in A42. An untranscribed footprint of a third A42 HD1 gene, c1-1, was detected between the A43 b2-2 and d1-1 genes by Southern hybridisation.  相似文献   

11.
Tetrapolar fungal mating types: Sexes by the thousands   总被引:6,自引:1,他引:5  
  相似文献   

12.
The mating type locus (MTL) of Candida albicans contains the mating type genes and has, therefore, been assumed to play an exclusive role in the mating process. In mating-incompetent a/α cells, two of the mating type genes, MTL a1 and MTLα2, encode components of the a1-α2 corepressor that suppresses mating and switching. But the MTL locus of C. albicans also contains three apparently unrelated “nonsex” genes (NSGs), PIK, PAP and OBP, the first two essential for growth. Since it had been previously demonstrated that deleting either the a/α copy of the entire MTL locus, or either MTLa1 or MTLα2, affected virulence, we hypothesized that the NSGs in the MTL locus may also play a role in pathogenesis. Here by mutational analysis, it is demonstrated that both the mating type and nonsex genes in the MTL locus play roles in a/α biofilm formation, and that OBP is essential for impermeability and fluconazole resistance.  相似文献   

13.
Pheromone signaling plays an essential role in the mating and sexual development of mushroom fungi. Multiallelic genes encoding the peptide pheromones and their cognate 7-transmembrane helix (7-TM) receptors are sequestered in the B mating type locus. Here we describe the isolation of the B6 mating type locus of Coprinus cinereus. DNA sequencing and transformation analysis identified nine genes encoding three 7-TM receptors and six peptide pheromone precursors embedded within 17 kb of mating type-specific sequence. The arrangement of the nine genes suggests that there may be three functionally independent subfamilies of genes each comprising two pheromone genes and one receptor gene. None of the nine B6 genes showed detectable homology to corresponding B gene sequences in the genomic DNA from a B3 strain, and each of the B6 genes independently alter B mating specificity when introduced into a B3 host strain. However, only genes in two of the B6 groups were able to activate B-regulated development in a B42 host. Southern blot analysis showed that these genes failed to cross-hybridize to corresponding genes in the B42 host, whereas the three genes of the third subfamily, which could not activate development in the B42 host, did cross-hybridize. We conclude that cross-hybridization identifies the same alleles of a particular subfamily of genes in different B loci and that B6 and B42 share alleles of one subfamily. There are an estimated 79 B mating specificities: we suggest that it is the different allele combinations of gene subfamilies that generate these large numbers.  相似文献   

14.
对桦纤孔菌菌株MDJCBS88的显微形态、菌丝及担孢子核相进行了观察。采用棉籽壳培养基对担孢子萌发形成的菌株进行栽培试验,筛选出不形成子实体或子实体发育不完整的菌株,将这些菌株在平板上进行了亲和试验,分析桦纤孔菌的有性生殖方式;并基于基因组序列进行交配型基因克隆验证,分析桦纤孔菌的交配型位点结构。显微观察发现,桦纤孔菌菌丝没有锁状联合结构,菌丝细胞无核到多核;子实层担孢子可含0-4个不等的细胞核,不同时期弹射的担孢子含有的细胞核数量不同。桦纤孔菌担孢子萌发率极低,能萌发的担孢子多为早期弹射的担孢子;培养基也影响担孢子的萌发率,与PDA培养基和CYM培养基相比,桦木屑培养基最适合桦纤孔菌担孢子萌发,萌发率为4.55%。从担孢子萌发的96个菌株中获得了2个不结实菌株和9个结实不产孢菌株,占11.5%,这些菌株间亲和试验出现不同的表现特征,包括形成产孢子实体,产生菌丝纽结,相互融合和相互拮抗等现象,认为桦纤孔菌的有性生殖以次级同宗结合为主,并受交配型基因控制。交配型位点克隆测序后分析发现,桦纤孔菌交配型A位点共14 034 bp,含有一个MIP基因和两组HD1和HD2基因;交配型B位点包含3个疑似信息素受体基因和1个信息素前体编码基因。  相似文献   

15.
16.
17.
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (~2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.  相似文献   

18.
19.
Tsukii Y  Hiwatashi K 《Genetics》1983,104(1):41-62
In mating interactions in Paramecium caudatum, initial mating agglutination is strictly mating-type specific, but subsequent conjugating pair formation is not mating-type specific. Using this nonspecificity of pair formation, intersyngenic (intersibling species) pairs were induced by mixing four mating types of two different syngens. To distinguish intersyngenic pairs from intrasyngenic ones, the behavioral marker CNR (Takahashi 1979) was mainly used. Clones of intersyngenic hybrids showed high fertility and thus made feasible a genetic analysis of syngenic specificity of mating type. The syngenic specificities of E (even) mating types were found to be controlled by co-dominant multiple alleles at the Mt locus, and those of O (odd) mating types by interactions of co-dominant multiple alleles at two loci, MA and MB. Clones of heterozygotes express dual mating types. Mt is epistatic to MA and MB, and thus O mating types can be expressed only in the recessive homozygote (mt/mt) at the Mt locus. In addition, at least one allele each at the MA and MB loci must have a common syngen specificity for the expression of O types. Thus, when MA is homozygous for one syngen and MB is homozygous for another syngen, no mating type is expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号