首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined macronutrient input from pollen in two naturally regenerating pine stands in southeast Korea. Durham gravity pollen collectors were used to measure pine pollen deposition and the macronutrients in the collected pine pollen were analyzed. In 1998, pine pollen deposition began just before 18 April and lasted for approximately 2weeks. Total pine pollen deposition differed between the two sampling sites; 27.5kgha–1 was collected from the mature stand and 17.7kgha–1 was collected from the young stand. The values for nutrient deposition from pine pollen are 549gha–1 N, 78gha–1 P, 240gha–1 K, 45gha–1 S and 22gha–1 Mg at the mature stand and 353gha–1 N, 51gha–1 P, 151gha–1 K, 27gha–1 S and 14gha–1 Mg at the young stand, suggesting that nutrients from pine pollen contribute to forest nutrient cycling. The pine pollen deposition values obtained from our study (17.7–27.5kg–1ha–1year–1) are approximately 1/115–180-fold that of pine litterfall in Korea. If we take pollen nutrients into account, the contribution rate of pollen to the annual nutrient input is very high in our study (N 1/30, P 1/5, K 1/9 that of litterfall). Macronutrient deposition from pine pollen is concentrated temporally in spring. Although the annual contribution of nutrient mass by pollen is small compared to that of litterfall, the rapid turnover rate of pollen nutrients combined with episodic deposition suggests that pollen may play a disproportionate role in temperate pine forest nutrient cycling.  相似文献   

2.
The present study demonstrates a procedure for the rapid development of a high number of somatic embryos from embryogenic suspension culture. This method might be efficient for mass propagation of Phnix dactylifera L. Embryogenic callus placed in liquid medium with 10–5M ABA yielded an average 72 embryos per 100ml of culture medium within 2months, while those placed on solid medium yielded an average of 33, 20 and 16 embryos per 100ml of culture medium respectively for 10–7, 10–6 and 10–5 M ABA after 4months. The combination of 2,4-DIchlorophenoxyacetic acid (2,4-D) (4.5×10–7M), glutamine (6.7×10–4M), and ABA (10–5M) (L8 liquid medium) showed a beneficial effect on somatic embryos production compared to 2,4-D and glutamine alone, while this combination significantly (p<0.05) increased the accumulation of storage proteins (144 and 138mgg–1 DW respectively for Jihel and Bousthami noir cultivars) in somatic embryos. The somatic embryos which underwent maturation on medium containing only 4.5×10–7M 2,4-D and 10–5M ABA (L6 liquid medium) accumulated more sugars (292 and 265mgg–1 DW respectively for Jihel and Bousthami noir) than those matured on any other liquid medium. Histological studies revealed that somatic embryos (developed in L6 and L8 liquid media) accumulated less reserve compounds (proteins and sugars) than zygotic embryos. The addition of activated charcoal (0.25 and 0.5gl–1) and phytagel® (2.5gl–1) to the germination medium may be useful for enhancing the germination of Phnix dactyliferasomatic embryos.  相似文献   

3.
The effects of fertilization [control (C), 200kgNha–1+25kgP ha–1 (LNP) and 400kgNha–1+ 50kgP ha–1 (HNP)] on fine root dynamics were examined in a 40-year-old Larix leptolepis plantation in central Korea. The average fine root biomass during the growing season for C, LNP and HNP was 957, 934 and 814kgha–1, respectively, whereas the fine root production for C, LNP and HNP was 2103, 2131 and 2066kgha–1, respectively. Nitrogen and P inputs into the soil via fine root turnover for C, LNP and HNP were 23.0 and 1.2, 23.3 and 1.2 and 22.6 and 1.2kgha–1, respectively. There were no significant differences in fine root biomass, production and N and P inputs through fine root turnover between the fertilization treatments during the first growing season after fertilization.  相似文献   

4.
Planktonic microbial interactions in the central basin of Lake Baikal were examined on a summer day in 1999. The subsurface maxima of bacterial abundance and chlorophyll concentration were recorded at the same depth, whereas the vertical distribution of heterotrophic nanoflagellates was the inverse of those of bacteria and picophytoplankton. Release of extracellular organic car-bon (EOC) from phytoplankton was estimated by the NaH14CO3 method as 2.4µgCl–1day–1. Bacterial production (4.3µgCl–1day–1), estimated in a bottle incubation experiment using size-fractionated water samples, exceeded the EOC released. Thus, other supplying sources of organic matter are needed for the bacterial production. Grazing (2.6µgCl–1day–1) was also estimated in the experiment and accounted for 60% of the bacterial production. This is the first report on the microbial food web in the central basin of Lake Baikal.  相似文献   

5.
Two samples of red soil, one from Gushikawa Recreation Center (GRC) and one from Okinawa Royal Golf Club (ORGC), were examined for particle size distribution, textures, minerals, and chemical compositions. The effects of particle size and grinding of clay minerals on pH, electrical conductivity (EC), and dissolved chemical species were studied in deionized water and river water. The results of red soil solutions were compared with those of acidic waters found in red soil dominated areas. The minimum pH values of soil solutions extracted by deionized water were 4.38–5.36 and 5.16–5.89 and the maximum values of EC were 4.91–16.98mSm–1 and 3.54–11.23mSm–1 for GRC and ORGC, respectively. In the river water samples equilibrated with red soils, the minimum pH values were 4.48–5.10 and 4.77–5.91 and the maximum EC values were 19.6–34.2mSm–1 and 17.5–25.0mSm–1 for GRC and ORGC, respectively. The values of pH and EC varied with the soil–solution ratio and the particle size. The chemical composition of river water without mixing with red soil shows Na+K+ and Ca2+Mg2+. After mixing with red soil, the trend of the concentrations changed to Na+K+ and Mg2+Ca2+, which is the same as that of soil solutions in deionized water as well as that of acidic waters found in the red soil area. The pH of the acidic waters was 4.95–5.81 and EC was 7.76–30.0mSm–1. Laboratory experimental results agreed well with those found in the field in terms of trend of concentrations of the chemical species and pH. Therefore, the results of this study suggest that the low pH and trend of the concentrations of chemical species of the acidic waters found in the red soil dominated areas were the result of the interaction of natural water and red soil.  相似文献   

6.
To clarify consistency in the size of carbon pool of a lowland tropical rainforest, we calculated changes in above-ground biomass in the Pasoh Forest Reserve, Peninsular Malaysia. We estimated the total above-ground biomass of a mature stand using tree census data obtained in a 6-ha plot every 2years from 1994 to 1998. The total above-ground biomass decreased consistently from 1994 (431Mgha–1) to 1998 (403Mgha–1) (1Mg=103 kg). These are much lower than that in 1973 for a 0.2ha portion of the same area, suggesting that the the total above-ground biomass reduction might have been consistent in recent decades. This trend contrasted with a major trend for neotropical forests. During 1994–1998, the forest gained 23.0 and 0.88Mgha–1 of the total above-ground biomass by tree growth and recruitment, respectively, and lost 51.9Mgha–1 by mortality. Overall, the biomass decreased by 28.4Mgha–1 (i.e. 7.10Mgha–1·year–1), which is almost equivalent to losing a 76-cm-diameter living tree per hectare per year. Analysis of positive and negative components of biomass change revealed that deaths of large trees dominated the total above-ground biomass decrease. The forest biomass also varied spatially, with the total above-ground biomass density ranging 212–655Mgha–1 on a 0.2-ha basis (n= 30 subplots, 1998) and 365–440Mgha–1 on a 1ha basis. A large decrease of the total above-ground biomass density (>50Mg per ha per 2years) in several 0.2-ha subplots contributed to the overall decrease in the 6-ha total above-ground biomass. In the present study, we discuss the association between forest dynamics and biomass fluctuation, and the implication for carbon cycling in mature forests with emphasis on forest monitoring and assessments of soil and decomposition systems.  相似文献   

7.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

8.
Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4mg l–1), shark routine swimming speed averaged 25.5 and 31.0cm s–1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0cm s–1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6 mg O2kg–1h–1 for S. tiburo, 437.2mg O2kg–1h–1 for C. acronotus, and 161.4mg O2 kg–1 h–1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged 1.0cm whereas M. norrisi gillbeats averaged 56.0 beats min–1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39cm s–1, 2.5–3.0cm and 496 and 599mg O2 kg–1 h–1 under hypoxic conditions (2.5–3.4mg l–1), respectively. M. norrisi decreased swimming speeds to 16cm s–1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.  相似文献   

9.
Some of the largest riverine N fluxes in the continental USA have been observed in agricultural regions with extensive artificial subsurface drainage, commonly called tile drainage. The degree to which high riverine N fluxes in these settings are due to high net N inputs (NNI), greater transport efficiency caused by the drainage systems, or other factors is not known. The objective of this study was to evaluate the role of tile drainage by comparing NNI and riverine N fluxes in regions of Illinois with similar climate and crop production practices but with different intensities of tile drainage. Annual values of NNI between 1940 and 1999 were estimated from county level agricultural production statistics and census estimates of human population. During 1945–1961, riverine nitrate flux in the extensively tile drained region averaged 6.6kgNha–1year–1 compared to 1.3 to 3.1kgNha–1 for the non-tile drained region, even though NNI was greater in the non-tile drained region. During 1977–1997, NNI to the tile-drained region had increased to 27kgNha–1year–1 and riverine N flux was approximately 100% of this value. In the non-tile-drained region, NNI was approximately 23kgNha–1year–1 and riverine N flux was between 25% and 37% of this value (5 to 9kgNha–1year–1). Denitrification is not included in NNI and, therefore, any denitrification losses from tile-drained watersheds must be balanced by other N sources, such as depletion of soil organic N or underestimation of biological N fixation. If denitrification and depletion of soil organic N are significant in these basins, marginal reductions in NNI may have little influence on riverine N flux. If tile drained cropland in Illinois is representative of the estimated 11 million ha of tile drained cropland throughout the Mississippi River Basin, this 16% of the drainage area contributed approximately 30% of the increased nitrate N flux in the Lower Mississippi River that occurred between 1955 and the 1990s.  相似文献   

10.
Annual nitrogen and phosphorus budgets for the whole North Sea taking into account the most recent data available were established. The area considered has a total surface of approximately 700,000km2 and corresponds to the definition by OSPARCOM (Oslo and Paris Commission) with the exclusion of the Skagerrak and Kattegat areas. Input and output fluxes were determined at the marine, atmospheric, sediment and continental boundaries, and riverine inputs based on river flows and nutrient concentrations at the river–estuary interface were corrected for possible estuarine retention. The results showed that the North Sea is an extremely complex system subjected to large inter-annual variability of marine water circulation and freshwater land run-off. Consequently, resulting total N (TN) and P (TP) fluxes are extremely variable from 1 year to another and this has an important influence on the budget of these elements. Total inputs to the North Sea are 8870±4860kTNyear–1 and 494±279kTPyear–1. Denitrification is responsible for the loss of 23±7% of the TN inputs while sediment burial is responsible for the retention of only of 2±2% of the TP input. For TN, due to the large variability on marine and estuarine fluxes, and to the uncertainty related to the denitrification rate, it was concluded that the North Sea could either be a source (1930kTNyear–1) or a sink (1700kTNyear–1) for the waters of the North Atlantic Ocean. For TP it was concluded that the North Sea is mostly a source (–4 to 52kTPyear–1) for the waters of the North Atlantic Ocean.  相似文献   

11.
Cultures of Trichodesmium from the Northern and Southern Great Barrier Reef Lagoon (GBRL) have been established in enriched seawater and artificial seawater media. Some cultures have been maintained with active growth for over 6years. Actively growing cultures in an artificial seawater medium containing organic phosphorus (glycerophosphate) as the principal source of phosphorus have also been established. Key factors that contributed to the successful establishment of cultures were firstly, the seed samples were collected from depth, secondly, samples were thoroughly washed and thirdly, incubations were conducted under relatively low light intensities (PAR 40–50molquantam–2s–1). N2 fixation rates of the cultured Trichodesmium were found to be similar to those measured in the GBRL. Specific growth rates of the cultures during the exponential growth phase in all enriched media were in the range 0.2–0.3day–1 and growth during this phase was characterised by individual trichomes (filaments) or small aggregations of two to three trichomes. Characteristic bundle formation tended to occur following the exponential growth phase, which suggests that the bundle formation was induced by a lack of a necessary nutrient e.g. Fe. Results from some exploratory studies showed that filament-dominated cultures of Trichodesmium grew over a range of relatively low irradiances (PAR 5–120molquantam–2s–1) with the maximum growth occurring at 40–50molquantam–2s–1. These results suggest that filaments of the tested strain are well adapted for growth at depth in marine waters. Other studies showed that growth yields were dependent on salinity, with maximum growth occurring between 30 and 37psu. Also the cell yields decreased by an order of magnitude with the reduction of Fe additions from 450 to 45nM. No active growth was observed with the 4.5nM Fe addition.  相似文献   

12.
Saccharomyces cerevisiae-based ethanol fermentations were conducted in batch culture, in a single stage continuous stirred tank reactor (CSTR), a multistage CSTR, and in a fermentor contaminated with Lactobacillus that corresponded to the first fermentor of the multistage CSTR system. Using a glucose concentration of 260 g l–1 in the medium, the highest ethanol concentration reached was in batch (116gl–1), followed by the multistage CSTR (106gl–1), and the single stage CSTR continuous production system (60gl–1). The highest ethanol productivity at this sugar concentration was achieved in the multistage CSTR system where a productivity of 12.7gl–1h–1 was seen. The other fermentation systems in comparison did not exceed an ethanol productivity of 3gl–1h–1. By performing a continuous ethanol fermentation in multiple stages (having a total equivalent working volume of the tested single stage), a 4-fold higher ethanol productivity was achieved as compared to either the single stage CSTR, or the batch fermentation.  相似文献   

13.
We investigated the carbon dynamics and budget in a grassland of Miscanthus sinensis, which is widely distributed in Japan, over a 2-year period (2000–2001). Plant biomass began to increase from May and peaked in September, then decreased towards the end of the growing season (October). Soil respiration rates also exhibited seasonal fluctuations that reflected seasonal changes in soil temperature and root respiration. The contribution of root respiration to total soil respiration was 22–41% in spring and summer, but increased to 52–53% in September. To determine the net ecosystem production (carbon budget), we estimated annual net primary production, soil respiration, and root respiration. Net primary production was 1207 and 1140gCm–2 in 2000 and 2001, respectively. Annual soil respiration was 1387gCm–2 in 2000 and 1408gCm–2 in 2001; root respiration was 649 and 695gCm–2 in 2000 and 2001, respectively. Moreover, some of the carbon fixed as net production (457–459gCm–2) is removed by mowing in autumn in this grassland. Therefore, the annual carbon budget was estimated to be –56gCm–2 in 2000 and – 100gCm–2 in 2001. These results suggest that the Miscanthus sinensis grassland in Japan can act as a source of CO2.  相似文献   

14.
Both freely suspended cells and immobilized cultures of Spirulina platensis, a blue-green alga, biotransformed exogenously fed codeine, an opium alkaloid, to morphine. The external addition of codeine to the culture medium did not affect the growth of S. platensis. Immobilization of Spirulina in a calcium alginate gel matrix was optimized by using 2% (w/v) sodium alginate and reducing the concentration of nutrients of Zarrouk's medium, which caused destabilization of the calcium alginate gel. The accumulation of morphine increased gradually and reached maxima of 330g 100ml–1 culture at 105h in freely suspended and 351g 100ml–1 at 96h in immobilized Spirulina cultures. Accumulation of morphine was detected only in the medium, whereas cells did not show accumulation. The immobilized Spirulina cultures showed marginally higher conversion of codeine to morphine over freely suspended cultures.  相似文献   

15.
A method of measuring CO2gas exchange (caused, for example, by microalgal photosynthesis on emersed tidal mudflats) using open flow IR gas analyzers is described. The analyzers are integrated in a conventional portable photosynthesis system (LI-6400, LI-COR, Nebraska, USA), which allows manipulation and automatic recording of environmental parameters at the field site. Special bottomless measuring chambers are placed directly on the surface sediment. Measurements are performed under natural light conditions and ambient CO2concentrations, as well as under different CO2concentrations in air, and various PAR radiation levels produced by a LED light source built into one of the measurement chambers. First results from tidal channel banks in a north Brazilian mangrove system at Bragança (Pará, Brazil) under controlled conditions show a marked response of CO2assimilation to CO2concentration and to irradiance. Photosynthesis at 100molmol–1CO2in air in one sample of a well-developed algal mat was saturated at 309mol photons m–2s–1, but increased with increasing ambient CO2concentrations (350 and 1000mol mol–1CO2) in the measuring chamber. Net CO2assimilation was 0.8mol CO2m–2s–1at 100mol mol–1CO2, 5.9mol CO2m–2s–1at 350mol mol–1CO2and 9.8mol CO2m–2s–1at 1000mol mol–1CO2. Compensation irradiance decreased and apparent photon yield increased with ambient CO2concentration. Measurements under natural conditions resulted in a quick response of CO2exchange rates when light conditions changed. We recommend the measuring system for rapid estimations of benthic primary production and as a valuable field research tool in connection with certain ecophysiological aspects under changing environmental conditions.  相似文献   

16.
Uptake kinetics of nitrogen derived from sewage–seawater mixtures (2.5–20% v/v effluent) were determined in the laboratory for Ulva rigida (Chlorophyceae) native from Bahía Nueva (Golfo Nuevo, Patagonia, Argentine). In terms of nitrogen concentration, experimental enrichment levels varied between 53.7 and 362.3M of ammonium and between 0.77 and 6.21M of nitrate+nitrite. Uptake rates were fitted to the Michaelis–Menten equation, with the following kinetic parameters: ammonium: Vmax = 591.2molg–1h–1, K s=262.3M, nitrate+nitrite: V max=12.9molg–1h–1, K s=3.5M). Both nutrients were taken up simultaneously, but ammonium incorporation was faster in all cases. The results show a high capability of Ulva rigida to remove sewage-derived nitrogen from culture media. In the field, most of the nitrogen provided by the effluent would be tied up in algal biomass, supporting low nitrogen levels found at a short distance away from the source.  相似文献   

17.
The biomass of summer forage and their contributions were surveyed to show that litterfall supported a high-density population of sika deer (Cervus nippon Temminck) in summer on Nakanoshima Island, Toya Lake, Japan. In July 1974, the grassland had the highest productivity among understory vegetations (228±55kgha–1: mean±SE). In deciduous forests, palatable plants occupied only 0.1% of the biomass of 0.872±0.366kgha–1, and deciduous leaves within the reach of deer (=220cm at height) produced 0.208±0.070kgha–1. However, litterfall during this period had the highest productivity, 28.7± 5.3kgha–1. The deer consumed litterfall (75.6% in dry weight), short grasses (17.2%), deciduous forest understory (4.1%), deciduous leaves within the reach of deer (3.0%) and conifer plantation under story (0.1%). It is suggested that the high-density deer population would be maintained by litterfall through the year instead of browsing in deciduous forests, which has been overlooked.  相似文献   

18.
In acid-sensitive watersheds of the northeastern US, decreases in SO2 emissions and atmospheric deposition of sulfur have not been accompanied by marked changes in pH and acid neutralizing capacity (ANC). To better understand this phenomenon, we investigated the long-term trends in soil solution (1984–1998) and stream water (1982–2000) chemistry along a natural soil catena at the Hubbard Brook Experimental Forest, New Hampshire, USA. Significant declines in strong acid anion concentrations were accompanied by declines in base cation concentrations in soil solutions draining the Oa and Bs soil horizons at all elevations. The magnitude of change varied with position in the landscape. Recovery, as indicated by increasing ANC (mean 2.38µEqL–1year–1) and decreasing concentrations of inorganic monomeric Al (mean 1.03µmolL–1year–1), was confined to solutions draining the Bs horizon at mid-to-higher elevations. However, persistently low Ca2+/Ali ratios (<1) in Bs soil solutions at these sites may be evidence of continuing Al stress to trees. In Bs soil solution at a lower elevation site and in Oa soil solutions at all sites, declines in base cations (mean 3.71µEqL–1year–1) were either similar to or exceeded declines in strong acid anions (mean 3.25µEqL–1year–1) resulting in no change in ANC. Changes in the chemistry of stream water reflected changes in soil solutions, with the greatest improvement in ANC occurring at high elevation and the rate of increase decreasing with decreases in elevation. The pH of soil solutions and stream waters either declined or did not change significantly. Therefore pH-buffering processes, including hydrolysis of Al and possibly the deprotonation of organic acids, have prevented increases in drainage water pH despite considerable reductions in inputs of strong acids.  相似文献   

19.
Freshwater salmonids exposed to low environmental pH typically suffer a net loss of ions, primarily Na+ and Cl, across the gills, resulting in reduced plasma and tissue ion concentrations. However, in recent experiments in our laboratory, juvenile rainbow trout, Oncorhynchus mykiss, fed a ration of 1% body weight d–1 or greater showed no ionoregulatory disturbance during chronic, sublethal acidification. This raised the possibility that these fish had acclimated to low pH in that they would be better able to withstand further, more severe acidification than fish that had no prior experience of acid conditions: previous studies had concluded that such acclimation does not occur. This hypothesis was tested by measuring unidirectional ion fluxes during a 24h acute acid challenge (pH 4.2) in juvenile rainbow trout that had previously been exposed to either ambient pH 6.2 (naive fish) or sublethal low pH 5.2 (acid pre-exposed fish) for 90 days, and fed a ration of either 1.0 or 0.25% d–1 (wet basis). No mortalities were observed during the acute acid challenge in the fish fed the higher ration and no differences between the two groups in the response of Na+ fluxes were observed. Sodium influx in both groups was significantly inhibited throughout the challenge and Na+ net flux was significantly stimulated over the first 6h. Prior to the acute acid challenge, the fish fed the lower ration that had previously been exposed to pH 5.2 had significantly lower plasma ion concentrations than those fish previously exposed to pH 6.2. Both groups suffered mortalities; those of the naive fish (22% by 24h) being markedly lower than those of the acid pre-exposed fish (68% by 24h). However, there were no significant differences in either Na+ or Cl fluxes between the two groups of fish during the acid challenge: both showed significant inhibition of ion influxes and significantly greater net ion losses, resulting in reduced plasma ion concentrations. These results indicate that rainbow trout are unable to acclimate to environmental acidification irrespective of the availability of dietary salts.  相似文献   

20.
Six specimens (2 flexion larvae: 9.5–10.4mm in notochord length; 4 postflexion larvae: 12.3–18.2mm in standard length) collected from the western North Pacific are tentatively ascribed to the genus Uncisudis of the tribe Lestidiini of the subfamily Paralepidinae (Paralepididae) in sharing remarkably elongate and filamentous pelvic fin rays, their tips reaching the origin of the anal fin. They are described as Uncisudis posteropelvis sp. nov. in uniquely having the insertion of pelvic fins closer to the origin of anal fin than to the posterior end of dorsal fin base among lestidiine species. Addition to this character, the new species has remarkably elongate and filamentous dorsal fin rays, the short distance between anus and origin of anal fin (4.2–6.1% of standard length, SL), the posteriorly located pelvic fins (prepelvic length 69.4–71.5% SL), dorsal fin rays 10, anal fin rays 28–29, myomeres 41–42+38–40=80–81 (vertebrae 38+41=79), and peritoneal pigment spots 11–12. The occurrence of larvae differing in pigment pattern from the present new species suggests another undescribed species of Uncisudis in the western South Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号