首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of the high mannose-type oligosaccharides attached to newly synthesized acid hydrolases occurs in two sequential steps within the endoplasmic reticulum and the Golgi apparatus, and the products generated at the two sites differ with respect to the location of the phosphorylated mannose residue. To investigate the mechanism of this two-step phosphorylation, biosynthesis of the Man-6-P recognition marker was studied in class E Thy-1- and J774 cells metabolically labeled with [2-3H]mannose. Class E Thy-1- cells produce truncated high mannose oligosaccharides that lack 4 mannose residues from the alpha 1,6-branch of the core beta-linked mannose residue; three of the missing residues are potential phosphorylation sites. Acid hydrolases produced by these mutant cells were phosphorylated on the alpha 1,3-branch of the truncated oligosaccharide even when transport to the Golgi apparatus was inhibited. J774 cells produce normal high mannose oligosaccharides, but they secrete a large percentage of their newly synthesized acid hydrolases. The secreted enzymes contained primarily diphosphorylated units in which a phosphate was positioned to both the alpha 1,3- and alpha 1,6-branches of the core beta-linked mannose. J774 cells treated with deoxymannojirimycin continued to phosphorylate and to secrete acid hydrolases. The secreted hydrolases, however, contained only monophosphorylated oligosaccharides in which the phosphate was restricted to the alpha 1,6-branch. These results indicate that mannose residues within high mannose oligosaccharides impose constraints on the phosphorylation of their composite structures. We conclude that the two-step phosphorylation occurs as a result of a common phosphotransferase at both the pre-Golgi and Golgi locations and a change in the conformation of the oligosaccharides attached to the acid hydrolases through the action of Golgi-associated alpha-mannosidase I.  相似文献   

2.
Phosphomannosyl residues on lysosomal enzymes serve as an essential component of the recognition marker necessary for binding to the mannose 6-phosphate (Man 6-P) receptor and translocation to lysosomes. The high mannose-type oligosaccharide units of lysosomal enzymes are phosphorylated by the following mechanism: N-acetylglucosamine 1-phosphate is transferred to the 6 position of a mannose residue to form a phosphodiester; then N- acetylglucosamine is removed to expose a phosphomonoester. We examined the kinetics of this phosphorylation pathway in the murine lymphoma BW5147.3 cell line to determine the state of oligosaccharide phosphorylation at the time the newly synthesized lysosomal enzymes bind to the receptor. Cells were labeled with [2-(3)H]mannose for 20 min and then chased for various times up to 4 h. The binding of newly synthesized glycoproteins to the Man 6-P receptor was followed by eluting the bound ligand with Man 6-P. Receptor-bound material was first detected at 30 min of chase and reached a maximum at 60 min of chase, at which time approximately 10 percent of the total phosphorylated oligosaccharides were associated with the receptor. During longer chase times, the total quantity of cellular phosphorylated oligosaccharides decreased with a half-time of 1.4 h, suggesting that the lysosomal enzymes had reached their destination and had been dephosphorylated. The structures of the phosphorylated aligosaccharides of the eluted ligand were then determined and compared with the phosphorylated oligosaccharides of molecules which were not bond to the receptor. The major phosphorylated oligosaccharide species present in the nonreceptor-bound material contained a single phosphosphodiester at all time examined. In contrast, receptor-bound oligosaccharides were greatly enriched in species possessing one and two phosphomonoesters. These results indicate that binding of newly synthesized lysosomal enzymes to the Man 6-P receptor occurs only after removal of the covering N- acetylglucosamine residues.  相似文献   

3.
Endocytosis of acid hydrolases via the cell surface mannose 6-phosphate (Man 6-P) receptor results in the delivery of the enzymes to lysosomes. To examine the fate of the ligand-associated phosphorylated high mannose oligosaccharides, we have analyzed the asparagine-linked oligosaccharides attached to beta-glucuronidase after uptake and processing by Man 6-P receptor-positive mouse L cells. beta-Glucuronidase, double-labeled with [2-3H]mannose and [35S]methionine, was isolated from the growth medium of mouse P388D1 cells. 80% of the [3H]mannose associated with the secreted enzyme was recovered as high mannose-type oligosaccharides, and 24-37% of these units were phosphorylated. Three species of phosphorylated oligosaccharides were identified; high mannose-type units containing either one or two phosphomonoesters, and hybrid-type units containing one phosphomonoester and one sialic acid residue. After endocytosis by the L cells, the beta-glucuronidase molecules migrated faster on an SDS gel, suggesting that the enzymes had been processed within lysosomes. Examination of the cell-associated beta-glucuronidase molecules indicated that: (a) the percentage of phosphorylated oligosaccharides remained comparable to the input form of the enzyme, even after a 24-h chase period, (b) the presence of a single species of phosphorylated oligosaccharide that contained one phosphomonoester, and (c) the positioning of the phosphate within the intracellular monophosphorylated species was comparable to the positioning of the phosphate within the two phosphomonoester species originally secreted by the P388D1 cells. Therefore, the internalized beta-glucuronidase molecules undergo a limited dephosphorylation; oligosaccharides containing two phosphomonoesters are converted to monophosphorylated species, but the one phosphomonoester forms are conserved. A comparison of the phosphorylated oligosaccharides recovered from ligands internalized by the L cells at 37 degrees and 20 degrees C indicated that: (a) molecules internalized at 20 degrees C retain a higher percentage of phosphorylated structures; and (b) at both temperatures the predominant phosphorylated oligosaccharide contains a single phosphomonoester group. The results indicate that the Man 6-P recognition marker persists after endocytosis and delivery to lysosomes and support the possibility that the limited dephosphorylation of the oligosaccharides may occur en route to these organelles.  相似文献   

4.
During their transport from the endoplasmic reticulum to lysosomes, newly synthesized acid hydrolases are phosphorylated in the Golgi apparatus to generate a common recognition marker, mannose 6-phosphate (Man 6-P). The phosphorylated acid hydrolases then bind to the Man 6-P receptor and are transported by an unknown route to lysosomes. To learn more about the delivery pathway, we examined the fate of the phosphorylated oligosaccharides synthesized by a Man 6-P receptor-positive line of mouse L-cells. In contrast to the rapid degradation of the recognition marker previously observed in mouse lymphoma cells (Gabel, C. A., D. E. Goldberg, and S. Kornfield. 1982. J. Cell Biol., 95:536-542), the number of high mannose oligosaccharides phosphorylated by the L-cells after a 30-min pulse labeling with [2-3H]mannose increased continuously during a subsequent 4-h chase period to a maximum of 9.3% of the total cell-associated structures. After 19 h of chase the absolute number of phosphorylated oligosaccharides declined, but the loss was accompanied by a general loss of cellular oligosaccharides such that 7.4% of the cell-associated high mannose oligosaccharides remained phosphorylated. The longevity of the Man 6-P recognition marker in the L-cells was verified by analyzing the ability of an individual acid hydrolase, beta-glucuronidase, to serve as a ligand for the Man 6-P receptor. At least 60% of the steady state beta-glucuronidase molecules isolated from the L-cells could undergo receptor-mediated endocytosis into enzyme-deficient human fibroblasts. Dense lysosomal granules isolated by metrizamide gradient centrifugation from [3H]mannose-labeled L-cells were found to be highly enriched in their content of phosphomonoester-containing oligosaccharides. The data indicate that acid hydrolases may retain their Man 6-P recognition markers within lysosomes, and suggest the possibility that dephosphorylation occurs at a nonlysosomal location through which the newly synthesized enzymes pass en route to lysosomes.  相似文献   

5.
We have purified phosphomannosyl-enzyme receptors from bovine liver on an affinity column composed of glycoproteins isolated from Dictyostelium discoideum secretions. Binding of human fibroblast beta-hexosaminidase B to receptors reconstituted into phosphatidylcholine liposomes was 1) specifically inhibited by mannose 6-phosphate, but not mannose 1-phosphate or glucose 6-phosphate, and 2) had properties similar to the previously reported binding of enzyme to receptors on cell surfaces and isolated membranes. In order to determine the structural features of the phosphomannosyl recognition marker required for receptor recognition, we covalently coupled purified receptor to an agarose gel bead support for affinity chromatography of phosphorylated, high mannose-type oligosaccharides isolated from fibroblast secretions radiolabeled with [2-3H]mannose. Neutral oligosaccharides and oligosaccharides containing one or two phosphates in phosphodiester linkage were not retained by the receptor column. By contrast, oligosaccharides bearing one phosphomonoester moiety were retarded on the column; those bearing two phosphomonoesters were bound to the column and were eluted with 10 mM mannose 6-phosphate. The binding of the oligosaccharides to the immobilized receptor correlates with their ability to be pinocytosed by fibroblasts and shows that the preferred recognition marker for the phosphomannosyl-enzyme receptor is a high mannose-type oligosaccharide chain bearing two uncovered phosphomannosyl groups.  相似文献   

6.
The post-translational processing of beta-glucuronidase in BW5147 mouse lymphoma cells is slow relative to other newly synthesized lysosomal enzymes. To characterize this slow maturation the acid hydrolase was immunoprecipitated from cells pulse-labeled with [2-3H]mannose. Radiolabeled beta-glucuronidase migrated as the precursor form of the enzyme for up to 4 h of chase, whereas another acid hydrolase, beta-galactosidase, was processed completely to its mature form within this same time period. Both beta-glucuronidase and beta-galactosidase obtained high levels of mannose 6-phosphate (Man 6-P) within 60 min of their biosynthesis. The Man 6-P content of beta-galactosidase declined rapidly during a subsequent chase while that of beta-glucuronidase remained high during the first 4 h of chase and then slowly declined. 3H-Labeled phosphorylated high mannose-type oligosaccharides isolated from beta-glucuronidase after 1 h of chase were composed primarily of species with one or two phosphodiester groups, but oligosaccharides with one and two phosphomonoesters became the predominant phosphorylated species with longer chase times. The phosphorylated oligosaccharides attached to other newly synthesized acid hydrolases, on the other hand, contained primarily phosphodiester species at all chase times. When BW5147 cells were pulsed with [3H]mannose and chased in the presence of monensin to disrupt transport, the number of phosphorylated oligosaccharides recovered from beta-glucuronidase was comparable to the quantity recovered from the enzyme produced by non-drug-treated cells. The number of phosphorylated units recovered from all other newly synthesized acid hydrolases, however, was greater in the presence of the ionophore than in its absence. Nondenaturing gel electrophoresis studies indicated that beta-glucuronidase existed in two forms at steady state within BW5147 cells and, as such, was similar to liver beta-glucuronidase in which a large percentage of the enzyme was present as a complex bound to egasyn. These data suggest that newly synthesized beta-glucuronidase produced by BW5147 cells complexes with an egasyn-like protein within the endoplasmic reticulum. This interaction retards the enzyme's migration through the secretory apparatus but does not prevent its access to Golgi-associated processing enzymes.  相似文献   

7.
We now recognize that a large number of membrane and soluble proteins contain covalently linked oligosaccharides that exhibit a vast array of structures and participate in a wide variety of biological processes. Nowhere is this better illustrated than the mannose 6-phosphate (Man-6-P) recognition system that mediates the trafficking of newly synthesized acid hydrolases to lysosomes in higher eukaryotes. The Asn-linked high-mannose oligosaccharides of these hydrolases facilitate folding of the nascent proteins in the endoplasmic reticulum via interaction with lectin-type chaperones and after phosphorylation in the Golgi, function as ligands for binding to Man-6-P receptors, a critical step in their transport to lysosomes. Failure to synthesize the Man-6-P recognition marker results in a serious lysosomal storage disease, one of a growing number of genetic conditions, termed congenital disorders of glycosylation, that result from faulty glycan biosynthesis.  相似文献   

8.
Lysosomal targeting of soluble lysosomal hydrolases is mediated by mannose 6-phosphate receptors, which recognize and bind mannose 6-phosphate residues in the oligosaccharide chains of proteins destined for delivery to lysosomes. This recognition marker is generated by the sequential action of two enzymes, the first of which, UDP-N-acetylglucosamine phosphotransferase, recognizes lysosomal enzymes on the basis of a structural determinant in their polypeptide chains. This recognition event is a key step in lysosomal targeting of soluble proteins, but the exact nature of the recognition determinant is not well understood. In this study we have characterized the phosphotransferase recognition signals of human lysosomal aspartylglucosaminidase (AGA) using transient expression of polypeptides carrying targeted amino acid substitutions. We found that three lysine residues and a tyrosine residing in three spatially distinct regions of the AGA polypeptide are necessary for phosphorylation of the oligosaccharides. Two of the lysines are especially important for the lysosomal targeting efficiency of AGA, which seems to be mostly dictated by the degree of phosphorylation of the alpha subunit oligosaccharide. On the basis of the results of this and previous studies we suggest a general model for recognition of lysosomal enzymes by the phosphotransferase.  相似文献   

9.
Lysosomal enzymes require a mannose 6-phosphate recognition marker, constructed on asparagine-linked oligosaccharide chains, for targeting to lysosomes. We have identified the glycosylation sites of human beta-hexosaminidase B and have determined the influence of individual oligosaccharides on the phosphorylation, lysosomal targeting, and catalytic activity of the enzyme. The five potential glycosylation sites of the hexosaminidase beta-chain were modified individually by site-directed mutagenesis, and the constructs were expressed in COS 1 cells. By this analysis, we determined that four of the five potential sites were glycosylated. Two of the four oligosaccharides were preferentially phosphorylated. The absence of these two preferentially phosphorylated oligosaccharides resulted in greatly reduced amounts of the lysosomal form of the enzyme with increased secretion into the medium. The catalytic activity of beta-hexosaminidase B was not significantly altered by the absence of individual oligosaccharides suggesting the folding and assembly of the enzyme was not disrupted.  相似文献   

10.
We have investigated the oligosaccharide requirements of the UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum. Uteroferrin, an acid hydrolase, was phosphorylated by the three N-acetylglucosaminylphosphotransferases, and the phosphorylated oligosaccharides were isolated and analyzed by ion suppression high performance liquid chromatography. In all three cases, the phosphorylated species contained 6 or more mannose residues. Phosphorylation of the Man5GlcNAc2 oligosaccharide could not be detected even though this was the major species on the native uteroferrin. The Man5GlcNAc2 oligosaccharides lack alpha 1,2-linked mannose residues, whereas the larger oligosaccharides contain 1 or more mannose residues in this linkage. Treatment of intact uteroferrin with an alpha 1,2-specific mannosidase-generated molecules whose oligosaccharides consisted almost entirely of species with 5 mannose residues. The N-acetylglucosaminylphosphotransferases could no longer phosphorylate such molecules. These data indicate that at least 1 alpha 1,2-linked mannose residue must be present on uteroferrin's oligosaccharide for phosphorylation to occur.  相似文献   

11.
Mannose 6-phosphate receptors (MPRs) play an important role in the targeting of newly synthesized soluble acid hydrolases to the lysosome in higher eukaryotic cells. These acid hydrolases carry mannose 6-phosphate recognition markers on their N-linked oligosaccharides that are recognized by two distinct MPRs: the cation-dependent mannose 6-phosphate receptor and the insulin-like growth factor II/cation-independent mannose 6-phosphate receptor. Although much has been learned about the MPRs, it is unclear how these receptors interact with the highly diverse population of lysosomal enzymes. It is known that the terminal mannose 6-phosphate is essential for receptor binding. However, the results from several studies using synthetic oligosaccharides indicate that the binding site encompasses at least two sugars of the oligosaccharide. We now report the structure of the soluble extracytoplasmic domain of a glycosylation-deficient form of the bovine cation-dependent mannose 6-phosphate receptor complexed to pentamannosyl phosphate. This construct consists of the amino-terminal 154 amino acids (excluding the signal sequence) with glutamine substituted for asparagine at positions 31, 57, 68, and 87. The binding site of the receptor encompasses the phosphate group plus three of the five mannose rings of pentamannosyl phosphate. Receptor specificity for mannose arises from protein contacts with the 2-hydroxyl on the terminal mannose ring adjacent to the phosphate group. Glycosidic linkage preference originates from the minimization of unfavorable interactions between the ligand and receptor.  相似文献   

12.
The kinetic properties of UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) partially purified from the soil amoeba Acanthamoeba castellanii have been studied. The transferase phosphorylated the lysosomal enzymes uteroferrin and cathepsin D 3-90-fold better than nonlysosomal glycoproteins and 16-83-fold better than a Man9GlcNAc oligosaccharide. Deglycosylated uteroferrin was a potent competitive inhibitor of the phosphorylation of intact uteroferrin (Ki of 48 microM) but did not inhibit the phosphorylation of RNase B or the simple sugar alpha-methylmannoside. Deglycosylated RNase (RNase A) did not inhibit the phosphorylation of RNase B or uteroferrin. These results indicate that purified amoeba GlcNAc-phosphotransferase recognizes a protein domain present on lysosomal enzymes but absent in most nonlysosomal glycoproteins. The transferase also exhibited a marked preference for oligosaccharides containing mannose alpha 1,2-mannose sequences, but this cannot account for the high affinity binding to lysosomal enzymes. A. castellanii extracts do not contain detectable levels of N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, the second enzyme in the biosynthetic pathway for the mannose 6-phosphate recognition marker. We conclude that A. castellanii does not utilize the phosphomannosyl sorting pathway despite expression of very high levels of GlcNAc-phosphotransferase.  相似文献   

13.
Cathepsin D is a bilobed lysosomal aspartyl protease that contains one Asn-linked oligosaccharide/lobe. Each lobe also contains protein determinants that serve as recognition domains for binding of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the first enzyme in the biosynthesis of the mannose 6-phosphate residues on lysosomal enzymes. In this study we examined whether the location of the protein recognition domain influences the relative phosphorylation of the amino and carboxyl lobe oligosaccharides. To do this, chimeric proteins containing either amino or carboxyl lobe sequences of cathepsin D substituted into a glycosylated form of the homologous secretory protein pepsinogen were expressed in Xenopus oocytes. The amino and carboxyl lobe oligosaccharides were then isolated from the various chimeric proteins and independently analyzed for their mannose 6-phosphate content. This analysis has shown that a phosphotransferase recognition domain located on either lobe of a cathepsin D/glycopepsinogen chimeric molecule is sufficient to allow phosphorylation of oligosaccharides on both lobes. However, phosphorylation of the oligosaccharide on the lobe containing the recognition domain is favored. We also found that the majority of the carboxyl lobe oligosaccharides of cathepsin D acquire two phosphates, whereas the amino lobe oligosaccharides only acquire one phosphate.  相似文献   

14.
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on acid hydrolases. The transferase exists as an alpha(2)beta(2)gamma(2) hexameric complex with the alpha- and beta-subunits derived from a single precursor molecule. The catalytic function of the transferase is attributed to the alpha- and beta-subunits, whereas the gamma-subunit is believed to be involved in the recognition of a conformation-dependent protein determinant common to acid hydrolases. Using knock-out mice with mutations in either the alpha/beta gene or the gamma gene, we show that disruption of the alpha/beta gene completely abolishes phosphorylation of high mannose oligosaccharides on acid hydrolases whereas knock-out of the gamma gene results in only a partial loss of phosphorylation. These findings demonstrate that the alpha/beta-subunits, in addition to their catalytic function, have some ability to recognize acid hydrolases as specific substrates. This process is enhanced by the gamma-subunit.  相似文献   

15.
Cathepsin L, a lysosomal cysteine protease, is the major excreted protein of transformed mouse NIH 3T3 cells. Previous studies have shown that asparagine-linked oligosaccharides associated with the secreted hydrolase contain mannose 6-phosphate (Man 6-P), the recognition marker for transport of newly synthesized acid hydrolases to lysosomes. To investigate the mechanism by which cathepsin L evades targeting to lysosomes, we determined the structure of the enzyme's oligosaccharides and analyzed its interaction with the cation-independent mannose 6-phosphate (Man 6-PCl) receptor. Oligosaccharides associated with procathepsin L isolated from the medium of [3H]mannose-labeled J774 cells were remarkably homogeneous; all of the radiolabeled structures were high mannose-type units that contained two phosphomonoesters and 7 mannose residues. Both the alpha 1,3- and alpha 1,6-branches of the oligosaccharides were phosphorylated. Oligosaccharides released by endoglycosidase H from [3H]mannose-labeled procathepsin L bound to a Man 6-PCl receptor affinity column. Despite the high affinity binding of these oligosaccharides, the intact glycoprotein was not a good ligand for the Man 6-PCl receptor. Procathepsin L was internalized poorly by Man 6-P receptor-mediated endocytosis and the purified acid protease interacted weakly with a Man 6-PCl affinity column. In contrast, pro-beta-glucuronidase (another acid hydrolase produced by J774 cells) was an excellent ligand for the Man 6-PCl receptor as judged by the endocytosis and affinity chromatographic assays. Phosphorylated oligosaccharides associated with the J774-secreted pro-beta-glucuronidase were heterogeneous and contained both mono- and diphosphorylated species. Tryptic glycopeptides generated from [3H]mannose-labeled procathepsin L, unlike the intact protein, were excellent ligands for the Man 6-PCl receptor. The results indicate that oligosaccharides associated with procathepsin L are processed uniformly to diphosphorylated species that bind with high affinity to the Man 6-PCl receptor. Protein determinants inherent within the intact acid hydrolase, however, inhibit the high affinity binding of these oligosaccharides and, as a result, impair the interaction of procathepsin L with the receptor.  相似文献   

16.
We have examined the phosphorylation of Asn-linked oligosaccharides introduced at seven novel sites on human cathepsin D to determine whether the location of an oligosaccharide on a lysosomal enzyme affects its ability to serve as a substrate for UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase), the enzyme that catalyzes the initial step in the biosynthesis of mannose 6-phosphate residues. The glycosylation sites were introduced into the cathepsin D cDNA by site-directed mutagenesis and were selected to be widely distributed over the surface of the molecule. When the constructs were expressed in Xenopus oocytes, the oligosaccharides at each glycosylation site were phosphorylated at levels considerably above background (19-70% phosphorylation versus < 0.4% for the secretory protein glycopepsinogen). However, oligosaccharides located closer to the essential components of the phosphotransferase recognition domain (lysine 203 and amino acids 265-292) were phosphorylated better than oligosaccharides located further away. Similar results were obtained for oligosaccharides at homologous sites on a pepsinogen/cathepsin D chimera containing only lysine 203 and residues 265-319 of cathepsin D, although the absolute levels of phosphorylation were lower. These results demonstrate that there is considerable flexibility in the placement of glycosylation sites on cathepsin D in terms of the ability of the oligosaccharides to serve as substrates for phosphotransferase, although oligosaccharides located closer to the phosphotransferase recognition determinant are preferentially phosphorylated.  相似文献   

17.
The intracellular transport of newly synthesized lysosomal hydrolases to lysosomes requires the presence of one or more phosphorylated high mannose-type oligosaccharides per enzyme. A receptor that mediates mannose-6-PO4-specific uptake of lysosomal enzymes is expressed on the surface of fibroblasts and presumably accounts for the intracellular transport of newly synthesized enzymes to the lysosome. In this study, we examined the internalization of lysosomal enzyme-derived phosphorylated oligosaccharides by cultured human fibroblasts. Oligosaccharides of known specific activity bearing a single phosphate in monoester linkage were internalized with Kuptake of 3.2 X 10(-7) M, whereas oligosaccharides bearing two phosphates in monoester linkage were internalized with a Kuptake of 3.9 X 10(-8) M. Thus, phosphorylated high mannose-type oligosaccharides appear to be the minimal structure required for recognition and uptake by the fibroblast receptor. The finding that the Kuptake for monophosphorylated oligosaccharides is 100-fold less than the reported Ki for mannose-6-phosphate indicates that the fibroblast phosphomannosyl receptor contains a binding site that recognizes features of the oligosaccharide in addition to mannose-6-phosphate.  相似文献   

18.
19.
T J Baranski  P L Faust  S Kornfeld 《Cell》1990,63(2):281-291
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the formation of mannose 6-phosphate residues. To identify this protein determinant, we constructed chimeric molecules between two aspartyl proteases: cathepsin D, a lysosomal enzyme, and pepsinogen, a secretory protein. When expressed in Xenopus oocytes, the oligosaccharides of cathepsin D were efficiently phosphorylated, whereas the oligosaccharides of a glycosylated form of pepsinogen were not phosphorylated. The combined substitution of two noncontinuous sequences of cathepsin D (lysine 203 and amino acids 265-292) into the analogous positions of glycopepsinogen resulted in phosphorylation of the oligosaccharides of the expressed chimeric molecule. These two sequences are in direct apposition on the surface of the molecule, indicating that amino acids from different regions come together in three-dimensional space to form this recognition domain. Other regions of cathepsin D were identified that may be components of a more extensive recognition marker.  相似文献   

20.
The specificity of the cation-independent and -dependent mannose 6-phosphate receptors (CI-MPR and CD-MPR) for high mannose-type N-glycans of defined structure containing zero, one, or two Man-P-GlcNAc phosphodiester or Man-6-P phosphomonoester residues was determined by analysis on a phosphorylated glycan microarray. Amine-activated glycans were covalently printed on N-hydroxysuccinimide-activated glass slides and interrogated with different concentrations of recombinant CD-MPR or soluble CI-MPR. Neither receptor bound to non-phosphorylated glycans. The CD-MPR bound weakly or undetectably to the phosphodiester derivatives, but strongly to the phosphomonoester-containing glycans with the exception of a single Man7GlcNAc2-R isomer that contained a single Man-6-P residue. By contrast, the CI-MPR bound with high affinity to glycans containing either phospho-mono- or -diesters although, like the CD-MPR, it differentially recognized isomers of phosphorylated Man7GlcNAc2-R. This differential recognition of phosphorylated glycans by the CI- and CD-MPRs has implications for understanding the biosynthesis and targeting of lysosomal hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号