首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vomeronasal organ (VNO) is a chemosensory structure of the nasal septum found in most tetrapods. Although potential behavioural correlates of VNO function have been shown in two of the three elephant species, its morphology in Loxodonta africana has not been studied. The development of the VNO and its associated structures in the African elephant are described in detail using serially sectioned material from fetal stages. The results show that many components of the VNO complex (e.g. neuroepithelium, receptor‐free epithelium, vomeronasal nerve, paravomeronasal ganglia, blood vessels, vomeronasal cartilage) are well developed even in a 154‐day‐old fetus, in which the VNO opens directly into the oral cavity with only a minute duct present. However, the vomeronasal glands and their ducts associated with the VNO were developed only in the 210‐day‐old fetus. Notably, in this fetus, the vomeronasal–nasopalatine duct system had acquired a pathway similar to that described in the adult Asian elephant; the VNOs open into the oral cavity via the large palatal parts of the nasopalatine ducts, which are lined by a stratified squamous epithelium. The paired palatal ducts initially coursed anteriorly at an angle of 45° from the oral recess and/or the oral cavity mucosa, and merged into the vomeronasal duct. This study confirms the unique characteristics of the elephant VNO, such as its large size, the folded epithelium of the VNO tube, and the dorsomedial position of the neuroepithelium. The palatal position and exclusive communication of the VNO with the oral cavity, as well as the partial reduction of the nasopalatine duct, might be related to the unique elephantid craniofacial morphogenesis, especially the enormous growth of the tusk region, and can be seen as autapomorphies.  相似文献   

2.
The olfactory neuroepithelium is unique in adult vertebrates in that bipolar sensory neurons are constantly dying and being replaced. The sensory neurons are also unusual because they are directly exposed to the external environment via their dendritic processes in the nasal cavity. Surveillance of this tissue by major histocompatibility complex (MHC) class I-restricted cytotoxic T cells would presumably serve as an important means of defense against foreign pathogens. Although adult brain shows a lack of class I molecules, it has not been reported if either proliferating neurons or sensory neurons in olfactory neuroepithelium also lack class I. To examine olfactory neuroepithelium, an antiserum against beta 2-microglobulin (beta 2-m), the invariant light chain associated with all class I molecules, was employed as a general probe in an immunocytochemical assay. beta 2-m was detected in columnar respiratory epithelium, blood vessel walls, and a small population of interstitial cells in the lamina propria, but no cell in the olfactory neuroepithelium stained for beta 2-m. Parallel patterns were obtained in the vomeronasal organ. These results suggest that lack of beta 2-m, and presumably class I, may be a general phenotype of neuronal cells regardless of their mitotic state or exposure to environmental antigens.  相似文献   

3.
4.
The vomeronasal organ comprises a pair of narrow tubes in the mammalian nasal septum, serving as a chemosensory system for pheromones. We examined the expression and localization of water channel aquaporins (AQPs) in the rat vomeronasal organ. AQP1 was localized in blood vessels, being particularly abundant in cavernous tissues of the nonsensory mucosa. AQP5 was found in the apical membrane of the gland acinar cells in the vomeronasal organ. AQP3 was detected in the basal cells of the nonsensory epithelium, whereas it was absent in the sensory epithelium. AQP4 was found in both the sensory and the nonsensory epithelia. Interestingly, AQP4 was highly concentrated in the sensory cells of the sensory epithelium. Immunoelectron microscopic examination clearly showed that AQP4 was localized at the plasma membrane in the cell body and lateral membrane of the dendrite, except for the microvillous apical membrane. Nerve fiber bundles emanating from neuronal sensory cells were positive for AQP4, whereby the plasma membrane of each axon was positive for AQP4. These observations clearly show that neuronal sensory cells in the vomeronasal organ are unique in that they express abundant AQP4 at their plasma membrane. This is in marked contrast to the olfactory and central nervous systems, where AQPs are not detectable in neurons, and instead, AQP4 is abundant in the supporting cells and astrocytes surrounding them. The present findings suggest a unique water-handling feature in neuronal sensory cells in the vomeronasal organ.  相似文献   

5.
Summary The apical cell coat of the olfactory epithelium proper and the vomeronasal neuroepithelium of the rat was investigated electronmicroscopically by means of the Ruthenium-red reaction. In the olfactory epithelium proper, the cilia of receptor cells and microvilli of supporting cells possess a cell coat measuring approximately 10 nm in thickness. In the vomeronasal neuroepithelium, the apical cell coat is thicker than in the olfactory epithelium proper. On microvilli of vomeronasal receptor cells the cell coat varies in thickness from 15 to 20 nm, and on microvilli of supporting cells it measures approximately 75 nm. The functional implications of these findings are discussed.A portion of this study was presented at the 6th European Anatomical Congress in Hamburg. This publication is dedicated to Prof. E. KlikaSupported by the Deutsche Forschungsgemeinschaft (Br 358/5-1).  相似文献   

6.
The apical border of the vomeronasal neuroepithelium, the olfactory epithelium proper, and the septal organ possess varying lectin-binding properties. This can be judged by their ability to bind a peculiar lectin and/or by their reactivity to the given lectin. The following lectins have been used: Triticum vulgaris agglutinin (WGA), Ulex europeus agglutinin (UEA-1), Arachis hypogea agglutinin (PNA), Lymbus polyphenus agglutinin (LPA), Glycine soja agglutinin (SBA) and Dolchos diflerus agglutinin (DBA). But if the apical border of the vomeronasal neuroepithelium possesses certain binding areas for all the lectins investigated, the olfactory epithelium proper and the septal organ are not able to bind some of them.  相似文献   

7.
Male urinary pheromones modulate behavioral and neuroendocrine function in mice after being detected by sensory neurons in the vomeronasal organ (VNO) neuroepithelium. We used nuclear Fos protein immunoreactivity (Fos-IR) as a marker of changes in neuronal activity to examine the processing of male pheromones throughout the VNO projection pathway to the hypothalamus. Sexually naive male and female Balb/c mice were gonadectomized and treated daily with estradiol benzoate (EB) or oil vehicle for 3 weeks. Subjects were then exposed to soiled bedding from gonadally intact Balb/c males or to clean bedding for 90 min prior to sacrifice and processing of their VNOs and forebrains for Fos-IR. Male pheromones induced similar numbers of Fos-IR cells in the VNO neuroepithelium of oil-treated male and female subjects; however, EB-treated females had significantly more Fos-IR neurons in the VNO than any other group. There was an equivalent neuronal Fos response to male odors in the mitral and granule cells of the anterior and posterior accessory olfactory bulb of males and females, regardless of hormone treatment. In central portions of the VNO projection pathway (i.e., bed nucleus of the stria terminalis, medial preoptic area) neuronal Fos responses to male pheromones were present in female but absent in male subjects, regardless of hormone treatment. In a separate experiment, mating induced neuronal Fos-IR in these brain regions at levels in gonadally intact male subjects which were equal to or greater than those seen in ovariectomized females primed with estrogen and progesterone. This suggests that neurons in the central portions of the male's VNO pathway are capable of expressing Fos. Our results suggest that sexually dimorphic central responses to pheromones exist in mice that may begin in the VNO neuroepithelium.  相似文献   

8.
The proper development and functioning of the vertebrate brain depends on the correct positioning of neuronal precursors which is achieved by the widespread and far-ranging migration of cells from their birthplaces. The vast majority of neuronal precursors use cellular substrates for their migration. Until very recently, it was assumed that these cellular substrates were either glial (glia-mediated or gliophilic migration) or neuronal (neuron-mediated or neurophilic migration) in nature. The widely studied examples of gliophilic and neurophilic migrations in the developing brain are displacement of neuronal precursors along the processes of radial glia in the developing cortex and migration of neurons expressing gonadotropin-releasing hormone (GnRH) along the vomeronasal axons, respectively. Recent data indicate, however, that neuronal precursors might also use blood vessels as a physical substrate for their migration. The vasculature-guided (vasophilic) migration of neuronal precursors has been observed not only under normal conditions, in the healthy brain, but also following strokes. The purpose of this review is to highlight emerging principles and delineate putative mechanisms of vasculature-guided neuronal migration under both normal and pathological conditions.  相似文献   

9.
Four days after a single systemic injection of 50 mg/kg of dichlobenil(2,6-dichlorobenzonitrile), the olfactory neuroepithelium ofthe frog is extensively damaged. At the same time, electrophysiologicalresponses to odorant stimulations (2-heptanone, D-limonene,amyl acetate, camphor) are largely reduced. Pretreatment ofthe animals with metyrapone, an inhibitor of cytochrome P-450enzymatic systems, inhibits the histological and physiologicaltoxic effects of the dichlobenil injection. The olfactory tissuerecovered 3months after the dichlobenil injections and responsesto odorant stimulations returned. The same dichlobenil injectionsdid not induce lesions in the vomeronasal neuroepithelium. Chem.Senses 20: 433–440, 1995.  相似文献   

10.
Miragall  F. 《Brain Cell Biology》1983,12(4):567-576
Brain Cell Biology - Plasma membranes of sensory neurons from the olfactory and vomeronasal neuroepithelia of the male rat and olfactory neuroepithelium of the tiger salamander (Ambystoma tigrinum)...  相似文献   

11.
The present study was undertaken to examine the localization patterns of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) by enzyme histochemistry and neuronal nitric oxide synthase (NOS) by immunohistochemistry in the vomeronasal organ of rat from postnatal day 0 for 8 weeks (adult). Nicotinamide adenine dinucleotide phosphate-diaphorase activity was not observed in the sensory epithelium of the vomeronasal organ at postnatal day 0 (the day of birth) and at day 1. At postnatal day 2, NADPH-d activity was observed in several vomeronasal neurons and on the surface of the sensory epithelium. From 25 days through adulthood, the number of vomeronasal neurons having NADPH-d activity increased gradually. On the other hand, neuronal NOS immunoreactivity was not observed in the sensory epithelium of the vomeronasal organ in newborns or in the adult rat. In this study, it is suggested that the nitric oxide pathway in the sensory epithelium of the vomeronasal organ comes into play beyond postnatal day 3. Moreover, it was found that NADPH-d and neuronal NOS are not colocalized in the sensory epithelium of the developing rat vomeronasal organ.  相似文献   

12.
Mendoza  Andres S. 《Chemical senses》1986,11(4):541-555
The glands of adult mouse vomeronasal organ (VNO) were studiedwith light- and electro-microscopical techniques. The vomeronasalglands (VN-Gs) consist of several individual glandular complexesdistributed along the long axis of the VNO. The secretory productsreleased from VN-G cells enter into the lumen of the VNO inthe region of transition between the neuroepithelium and thereceptor-free epithelium. The acini show the typical morphologicalfeatures of serous glands. The secretory cells of these aciniare characterized by a round to oval nucleus and a well-developed,rough endoplasmic reticulum, both preferentially located inthe basal part of the cell. The supranuclear region is occupiedby the Golgi apparatus and secretory granules varying in sizeand electron density. They accumulate towards the apical partof the cell. Secretory cells are connected by tight junctions,desmosomes and membrane interdigitations, moreover, they arealso coupled by gap junctions. Axonal terminals containing clearvesicles and dense-cored vesicles are frequently seen betweenthe secretory cells. Secretory cells are directly related tothe thin basal lamina of the acinus; myoepithelial cells arenot present. In the lamina propria, numerous smooth muscle cells,blood vessels and nerve bundles containing both myelinated andunmyelinated axons can be observed. An automatic regulationof the activity of the VN-Gs is discussed in relation to thevomeronasal pump.  相似文献   

13.
The prosencephalon, or embryonic forebrain, grows within a mesenchymal matrix of local paraxial mesoderm and of neural crest cells (NCC) derived from the posterior diencephalon and mesencephalon. Part of this NCC population forms the outer wall of capillaries within the prosencephalic leptomeninges and neuroepithelium itself. The surgical removal of NCC from the anterior head of chick embryos leads to massive cell death within the forebrain neuroepithelium during an interval that precedes its vascularization by at least 36 hours. During this critical period, a mesenchymal layer made up of intermingled mesodermal cells and NCC surround the neuroepithelium. This layer is not formed after anterior cephalic NCC ablation. The neuroepithelium then undergoes massive apoptosis. Cyclopia ensues after forebrain deterioration and absence of intervening frontonasal bud derivatives. The deleterious effect of ablation of the anterior NC cannot be interpreted as a deficit in vascularization because it takes place well before the time when blood vessels start to invade the neuroepithelium. Thus the mesenchymal layer itself exerts a trophic effect on the prosencephalic neuroepithelium. In an assay to rescue the operated phenotype, we found that the rhombencephalic but not the truncal NC can successfully replace the diencephalic and mesencephalic NC. Moreover, any region of the paraxial cephalic mesoderm can replace NCC in their dual function: in their early trophic effect and in providing pericytes to the forebrain meningeal blood vessels. The assumption of these roles by the cephalic neural crest may have been instrumental in the rostral expansion of the vertebrate forebrain over the course of evolution.  相似文献   

14.
Summary The features of the apical and lateral surfaces of cells of the vomeronasal epithelium were studied in adult male mice by scanning electron microscopy. Supporting cells and receptor cells of the neuroepithelium are covered with microvilli. Microvilli of the sensory cells are longer and thinner than those of the supporting cells. Additionally, the former differ in local distribution, orientation, occurrence of branching and appearance of the cell coat. The receptor-free epithelium consists most likely of one cell type only, which shows different structural modifications including the presence, number and length of microvilli and cilia. In the transitional region, between the neuroepithelium and the receptor-free epithelium, immature receptor cells are present.This paper is dedicated to Prof. A. JinoSupported by grants from the Alexander von Humboldt-Stiftung and the Deutsche Forschungsgemeinschaft (Br. 358/5-1)  相似文献   

15.
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.  相似文献   

16.
The distribution of basement membrane and extracellular matrix components laminin, fibronectin, type IV collagen and heparan sulphate proteoglycan was examined during posterior neuropore closure and secondary neurulation in the mouse embryo. During posterior neuropore closure, these components were densely deposited in basement membranes of neuroepithelium, blood vessels, gut and notochord; although deposition was sparse in the midline of the regressing primitive streak. During secondary neurulation, mesenchymal cells formed an initial aggregate near the dorsal surface, which canalized and merged with the anterior neuroepithelium. With aggregation, fibronectin and heparan sulphate proteoglycan were first detected at the base of a 3- to 4-layer zone of radially organized cells. With formation of a lumen within the aggregate, laminin and type IV collagen were also deposited in the forming basement membrane. During both posterior neuropore closure and secondary neurulation, fibronectin and heparan sulphate proteoglycan were associated with the most caudal portion of the neuroepithelium, the region where newly formed epithelium merges with the consolidated neuroepithelium. In regions of neural crest migration, the deposition of basement membrane components was altered, lacking laminin and type IV collagen, with increased deposition of fibronectin and heparan sulphate proteoglycan.  相似文献   

17.
18.
Peter Karlson and Martin Lüscher used the term pheromone for the first time in 19591 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules2 secreted and/or contained in biological fluids3,4, such as urine, a liquid known to be a main source of pheromones3. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions5,6, hierarchical organisations3 and sexual interactions7,8 and are consequently directly correlated with the survival of a given species9,10,11. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO)10,12, a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen13,14 allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs)15. Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection16. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize17,18. Two main vomeronasal receptor families, V1Rs and V2Rs19,20,21,22, are composed respectively by 24023 and 12024 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs)25 and formyl peptide receptors (FPRs)26,27 are also expressed in VSNs.Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons28 TRPC2 independent transduction channels have been suggested6,29. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex.Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line30, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.  相似文献   

19.
Herpesviruses are ubiquitous pathogens that cause much disease. The difficulty of clearing their established infections makes host entry an important target for control. However, while herpesviruses have been studied extensively in vitro, how they cross differentiated mucus-covered epithelia in vivo is unclear. To establish general principles we tracked host entry by Murid Herpesvirus-4 (MuHV-4), a lymphotropic rhadinovirus related to the Kaposi''s Sarcoma-associated Herpesvirus. Spontaneously acquired virions targeted the olfactory neuroepithelium. Like many herpesviruses, MuHV-4 binds to heparan sulfate (HS), and virions unable to bind HS showed poor host entry. While the respiratory epithelium expressed only basolateral HS and was bound poorly by incoming virions, the neuroepithelium also displayed HS on its apical neuronal cilia and was bound strongly. Incoming virions tracked down the neuronal cilia, and either infected neurons or reached the underlying microvilli of the adjacent glial (sustentacular) cells and infected them. Thus the olfactory neuroepithelium provides an important and complex site of HS-dependent herpesvirus uptake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号