首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra high molecular weight polyethylene (PE) remains the primary bearing surface of choice in total knee replacements (TKR). Wear is controlled by levels of cross-shear motion and contact stress. The aim of this study was to compare the wear of fixed-bearing total knee replacements with curved and flat inserts and to test the hypothesis that the flat inserts which give higher contact stresses and smaller contact areas would lead to lower levels of surface wear. A low-conforming, high contact stress knee with a low-medium level of cross shear resulted in significantly lower wear rates in comparison to a standard cruciate sacrificing fixed-bearing knee. The low wear solution found in the knee simulator was supported by fundamental studies of wear as a function of pressure and cross shear in the pin on plate system. Current designs of fixed-bearing knees do not offer this low wear solution due to their medium cross shear, moderate conformity and medium contact stress.  相似文献   

2.
In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ?A) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ?A. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.  相似文献   

3.
Lower extremity muscle strength training is a focus of rehabilitation following total hip arthroplasty (THA). Strength of the hip abductor muscle group is a predictor of overall function following THA. The purpose of this study was to investigate the effects of hip abductor strengthening following rehabilitation on joint contact forces (JCFs) in the lower extremity and low back during a high demand step down task. Five THA patients performed lower extremity maximum isometric strength tests and a stair descent task. Patient-specific musculoskeletal models were created in OpenSim and maximum isometric strength parameters were scaled to reproduce measured pre-operative joint torques. A pre-operative forward dynamic simulation of each patient performing the stair descent was constructed using their corresponding patient-specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor muscles were strengthened with clinically supported increases (0–30%) above pre-operative values in a probabilistic framework to predict the effects on peak JCFs (99% confidence bounds). Simulated hip abductor strengthening resulted in lower peak JCFs relative to pre-operative for all five patients at the hip (18.9–23.8 ± 16.5%) and knee (20.5–23.8 ± 11.2%). Four of the five patients had reductions at the ankle (7.1–8.5 ± 11.3%) and low back (3.5–7.0 ± 5.3%) with one patient demonstrating no change. The reduction in JCF at the hip joint and at joints other than the hip with hip abductor strengthening demonstrates the dynamic and mechanical interdependencies of the knee, hip and spine that can be targeted in early THA rehabilitation to improve overall patient function.  相似文献   

4.
We have developed a mathematical model to calculate the contact stress distribution in total hip arthroplasty (THA) prosthesis between the articulating surfaces. The model uses the clearance between bearing surfaces as well as the inclination and thickness of the Ultra High Molecular Weight Poly-Ethylene (UHMWPE) cup to achieve this. We have used this mathematical model to contrast the maximal force during normal gait and during jogging. This is based on the assumption that the contact stress is proportional to the radial deformation of the cup. The results show that the magnitude of the maximal contact stress remains constant for inclination values in the range of [0-35 degrees ] and increase significantly with the cup clearance and liner thickness for inclination values in the range of [35-65 degrees ]. A major use for this model would be the calculation of spatial contact stress distribution during normal gait or jogging for different couples of bearing surfaces.  相似文献   

5.
Finite element simulation of early creep and wear in total hip arthroplasty   总被引:4,自引:0,他引:4  
Polyethylene wear particulate has been implicated in osteolytic lesion development and may lead to implant loosening and revision surgery. Wear in total hip arthroplasty is frequently estimated from patient radiographs by measurement of penetration of the femoral head into the polyethylene liner. Penetration, however, is multi-factorial, and includes components of wear and deformation due to creep. From a clinical perspective, it is of great interest to separate these elements to better evaluate true wear rates in vivo. Thus, the aim of this study was to determine polyethylene creep and wear penetration and volumetric wear during simulated gait loading conditions for variables of head size, liner thickness, and head–liner clearance. A finite element model of hip replacement articulation was developed, and creep and wear simulation was performed to 1 million gait cycles. Creep of the liner occurred quickly and increased the predicted contact areas by up to 56%, subsequently reducing contact pressures by up to 41%. Greater creep penetration was found with smaller heads, thicker liners, and larger clearance. The least volumetric wear but the most linear penetration was found with the smallest head size. Although polyethylene thickness increases from 4 to 16 mm produced only slight increases in volumetric wear and modest effects on total penetration, the fraction of creep in total penetration varied with thickness from 10% to over 50%. With thicker liners and smaller heads, creep will comprise a significant fraction of early penetration. These results will aid an understanding of the complex interaction of creep and wear.  相似文献   

6.
The life span of a total hip prosthesis is one of the main points on which the long-term success of arthroplasties depends. It is, by now, widely recognized that hip arthroplasty failure is mainly due to the aseptic loosening resulting from the presence of wear debris forming at the contact interface between the femoral head and the cup of the acetabulum. The size of these particles varies from a few micrometers to some tens of micrometers or more. The main aim of this study was therefore to investigate the formation of debris in the microscopic size range. For this purpose, a numerical study was carried out on various mechanisms leading to plastic deformations, which can lead to damage and wear in material. Numerical analyses were performed with a laboratory software program LMGC90, on the evolution of the plastic strains involved in various wear mechanisms on the microscopic scale.  相似文献   

7.
Damage to the femoral head in total hip arthroplasty often takes the form of discrete scratches, which can lead to dramatic wear acceleration of the polyethylene (PE) liner. Here, a novel formulation is reported for finite element (FE) analysis of wear acceleration due to scratch damage. A diffused-light photography technique was used to globally locate areas of damage, providing guidance for usage of high-magnification optical profilometry to determine individual scratch morphology. This multiscale image combination allowed comprehensive input of scratch-based damage patterns to an FE Archard wear model, to determine the wear acceleration associated with specific retrieval femoral heads. The wear algorithm imposed correspondingly elevated wear factors on areas of PE incrementally overpassed by individual scratches. Physical validation was provided by agreement with experimental data for custom-ruled scratch patterns. Illustrative wear acceleration results are presented for four retrieval femoral heads.  相似文献   

8.
Novel algorithms for radiostereometric (RSA) measurements of the femoral head and metal-backed, hemi-spherical cups of a total hip replacement are presented and evaluated on phantom images and clinical double examinations of 20 patients. The materials were analysed with classical RSA and three novel algorithms: (1) a dual-projection head algorithm using the outline of the femoral head together with markers in the cup; (2) a marker-less algorithm based on measurements of the outline of the femoral head, the cup shell and opening circle of the cup; and (3) a combination of both methods. The novel algorithms improve current, marker-based, RSA measurements, as well as allows studies without marked cups. This opens the possibility of performing wear measurements on larger group of patients, in clinical follow-ups, even retrospective studies. The novel algorithms may help to save patient data in current RSA studies lost due to insufficiently marked cups. Finally, the novel algorithms simplify the RSA procedure and allow new studies without markers, saving time, money, and reducing safety concerns. Other potential uses include migration measurements of re-surfacing heads and measuring spherical sections as implant landmarks instead of markers.  相似文献   

9.
During the last years increasingly cementless hip endoprostheses have been implanted. Radiological wear measurement of cemented hip endoprostheses for the material couples polyethylene cup-ceramic- or metal head has been established in the literature. However, for cups encased by metal (screwing or pressfit cups), this method of measurement is not applicable. Therefore, a method has been developed to measure wear on radiographs on cementless spherical implants. The data were compared to those, obtained from conventional wear measurements on cemented hip cups. The results indicate that both techniques generate comparable results, thus validating the new technique as being suited for cementless cup implants.  相似文献   

10.
A new finite element model (FEM) based on an elasto-plastic behavior of ultra high molecular weight polyethylene (UHMWPE) was used to study the wear behavior of UHMWPE acetabular cup, which has a 32 mm diameter femoral head. The model imposed a plastic yield stress of 8 MPa on the UHMWPE so that any stresses beyond this would automatically be redistributed to its neighbor. The FEM model adopted a unique mesh design based on an open cube concept which eliminated the problems of singularities. Wear prediction combined the influences of contact stress, sliding distance and a surface wear coefficient. The new model predicted significantly higher volumetric wear rate (57 mm(3)/yr) well within the average reported clinical values. The model was also used to study the effect of friction and clearance between the acetabular cup and the femoral head. Increase in friction increased the volumetric wear rate but did not appear to affect the linear wear rate, which remained at 0.12 +/- 0.02 mm/yr. The predicted wear was sensitive to clearance. It was found that when the clearance was close to 0 and >0.5mm, severe wear occurred. The best clearance range was between 0.1 and 0.15 mm where the average linear wear rate was 0.1mm/yr and the volumetric wear was 55 mm(3)/yr. The present work indicates the importance of avoiding too tight or too loose a diametrical clearance.  相似文献   

11.

Introduction  

One aim of modern pharmacologic treatment in rheumatoid arthritis (RA) is to prevent joint destruction and reduce the need for surgery. Our purpose was to investigate secular trends in the incidence of primary total hip and knee arthroplasties in a well defined sample of patients with RA.  相似文献   

12.
A computational model was developed to identify the sites of third body particle embedment in a total hip acetabular component surface that are most problematic in terms of roughening the overpassing regions of the femoral head counterface, leading in turn to most severely accelerated polyethylene wear. The analytical approach used was to calculate loci of acetabular sites that, during the gait cycle, overpass previously documented regions of kinetically most critical femoral head roughening. Instantaneous local contact stress and sliding distance were postulated as factors contributing to the severity of the femoral head scratching/roughening which would be expected, due to otherwise-similar particles embedded along each such acetabular overpass locus. The computational results showed that the location of debris embedment was a potent determinant of the amount of polyethylene wear acceleration expected. The data also showed that the supero-lateral aspect of the acetabular cup is consistently and by far the most problematic area for third body particle embedment.  相似文献   

13.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   

14.
Occlusal changes were important factors in temporomandibular disorder (TMD). It is of interest to evaluate the association of occlusal wear facets in TMD patients. We used a dataset of 49 patients with and without TMD for this study. Occlusal wear facets were evaluated using Smith and Knight tooth wear index. Data shows that teeth wear was present more in patients with TMD (55%). The age group 26-40 years showed high prevalence of teeth wear (grade1) in TMD patients (P value = 0.034). TMD was present more in females than males. Female (54%) patients with TMD showed more teeth wear compared to males. Most patients with TMD showed posterior teeth wear (61%) than generalized teeth wear. Thus, association was present between occlusal teeth wear and TMD patients especially in the age group of 26-40 years. Hence, proper evaluation of occlusal factors will aid in early diagnosis of TMDs.  相似文献   

15.
Two dimensional finite element analyses were used to determine the direct tensile stress distributions along the lateral edge of the stem of the femoral component of a total hip replacement. The efficacy of using two-dimensional analysis for three-dimensional composite structures was assessed, and the two-dimensional model was found to be suitable for parametric studies. Various combinations of stem and cement stiffnesses were investigated. In particular the influence of stem taper, cement stiffness, prosthesis stiffness and the effect of a plateau on the prosthesis stresses, were examined and compared. The most significant factor was found to be the modulus of elasticity of the stem material. The tensile stresses decrease with decreasing modulus. Cement stiffness and stem shape appeared to have for less effect on stem stress.  相似文献   

16.
Fan L  Dang X  Wang K 《PloS one》2012,7(6):e39531
The present study was conducted to compare bipolar hemiarthroplasty (BA) with total hip arthroplasty (THA) in treatment of unstable intertrochanteric fractures in elderly osteoporotic patients. The THA group included 14 males and 26 females with a mean age of 73.4 years, and the BA group included 27 males and 45 females with a mean age of 76.5 years. Significant difference existed between the two groups in operation time, blood loss, transfusion volume and cost of hospitalization, while no remarkable difference was identified in hospitalization period, general complications, joint function, pain, rate of revision and mortality. No dislocation was observed in BA group while 3 occurred in THA group. The results indicated that for unstable intertrochanteric fractures in elderly osteoporotic patients, BA seems to be a better or more reasonable choice compared with THA for the reason of less blood loss, shorter operation time, lower cost and no dislocation.  相似文献   

17.
18.
Hip and lumbar spine disorders often coexist in patients with total hip arthroplasty (THA). The current study aimed to reveal pelvic motion pathology and altered trunk and hip muscle recruitment patterns relating to pelvic motion in patients with THA. Twenty-one women who underwent THA and 12 age-matched healthy women were recruited. Pelvic kinematics and muscle recruitment patterns (i.e., amplitude, activity balance, and onset timing) of the gluteus maximus, semitendinosus, multifidus, and erector spinae were collected during prone hip extension. Compared with healthy subjects, the patients showed increased pelvic motion, especially ventral rotation, decreased multifidus muscle activity relative to the hip extensors, and delayed onset of multifidus activity, despite reaction times and speeds of leg motion not being significantly different between the groups. Furthermore, while contributing factors associated with ventral pelvic rotation were not found, delayed onset of multifidus activity was detected as a factor related to the increased anterior tilt of the pelvis (r = 0.47, p < 0.05) in patients with THA. These results suggest that patients with THA have dysfunction of the stabilizer muscles of the lumbopelvic region along with increased pelvic motion.  相似文献   

19.
目的:探讨人工全髋关节置换术患者的康复护理方法.方法:选取2005年1月-2007年4月80例人工髋关节置换术患者80例入选实验组,2000年1月-2004年12月70例行人工髋关节置换术怠者入对照组,对对照组实行系统的人工全髋关节置换术固术期康复训练程序.结果:实验组患者髋关节功能按Charnley标准评分,优良率80%;对照组优良率为60%,两组具有统计学差异(P<0.05).结论:系统化康复护理有利于人工全髋关节置换术患者关节功能恢复,减少并发症发生,提高患者生活质量.  相似文献   

20.
A new method of computing the wear factor for total hip prostheses is presented. In the conventional method, only the resultant contact force and the track drawn by the point of its application are considered so that the product of the instantaneous force and sliding increment is integrated over one motion cycle. In the present, improved, method the contact pressure distribution is discretized by a large number of smaller normal forces, and the contribution of each is summed. This is important because the relative motion and contact pressure vary strongly with location, and because the transverse pressure component is substantial. Hence, the present surface integral represents the large contact surface better than the conventional line integral. A prerequisite for the surface integral was the method of computing the relative motion correctly anywhere on the contact surface, developed and published earlier by the present authors. For the pressure discretization, the contact surface was divided into nearly equal-sized surface elements. The contact pressure was modelled with ellipsoidal, paraboloidal and sinusoidal distributions. Two load cases were studied, double-peak and static. When an ellipsoidal contact pressure distribution extending over a hemisphere was discretized by 1000 element forces, the computed wear factor for double-peak load in a biaxial hip wear simulator was 30% lower than in the conventional resultant force case. The present method can be later developed further to involve the temporal variation of size and location of the contact surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号