首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major function of phytochromes in light-grown plants involves the perception of changes in the relative amounts of red and far-red light (R:FR ratio) and the initiation of the shade-avoidance response. In Arabidopsis thaliana, this response is typified by increased elongation growth of petioles and accelerated flowering and can be fully induced by end-of-day far-red light (EOD FR) treatments. Phytochrome B-deficient (phyB) mutants, which have a constitutive elongated-petiole and early-flowering phenotype, do not display a petiole elongation growth response to EOD FR, but they do respond to EOD FR by earlier flowering. Seedlings deficient in both phytochrome A and phytochrome B (phyA phyB), have a greatly reduced stature compared with wild-type or either monogenic mutant. The phyA phyB double null mutants also respond to EOD FR treatments by flowering early, suggesting the operation of novel phytochromes. Contrary to the behaviour of wild-type or monogenic phyA or phyB seedlings, petiole elongation in phyA phyB seedlings is reduced in response to EOD FR treatments. This reduction in petiole elongation is accompanied by the appearance of elongated internodes such that under these conditions the plants no longer display a rosette habit.  相似文献   

2.
Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.  相似文献   

3.
Robson P  Whitelam GC  Smith H 《Plant physiology》1993,102(4):1179-1184
Several growth parameters associated with the phytochrome-mediated shade avoidance syndrome have been measured in seedlings and mature plants of a wild-type and a hy3 mutant of Arabidopsis thaliana deficient in phytochrome B. Growth parameters were compared in plants grown in either white light (high red:far-red [R:FR] ratio) or white light plus added far-red (FR) light (low R:FR ratio). Wild-type Arabidopsis exhibited increased hypocotyl and petiole extension under a low, compared with a high, R:FR ratio. The hy3 mutant did not respond to low R:FR ratio by increase in hypocotyl or petiole length. Extension growth of wild-type plants was stimulated by brief end-of-day FR pulses, but similar treatment had no effect on extension growth of hy3 mutant plants. However, some responses to low R:FR ratio seen in the wild-type plants were also evident in the hy3 mutants. The number of days to bolting, the developmental stage at bolting, the leaf area, and the specific stem weight (weight per unit of length) all decreased in the wild-type and hy3 seedlings in response to low R:FR ratio. Low R:FR ratio caused a larger decrease in leaf area and specific stem weight in the mutant seedlings than in wild-type seedlings. The effects of low R:FR ratio on leaf area and specific stem weight were opposite to those of the hy3 lesion, which resulted in increased leaf area and specific stem weight in comparison with the wild type. Both leaf area and specific stem weight responses to low R:FR ratio also were unchanged in the ein mutant of Brassica rapa, known to be deficient in phytochrome B. These responses represent components of the shade-avoidance syndrome, and, consequently, the results indicate that phytochrome B cannot be solely responsible for the perception of R:FR ratio and the induction of shade-avoidance responses. The hypothesis is proposed that different phytochromes may be responsible for the regulation of extension growth and the regulation of lateral or radial expansion.  相似文献   

4.
The effect of daylength on flowering was investigated in the following mutants of Arabidopsis thaliana : phytochrome B deficient ( hy3=phyB ); phytochrome chromophore deficient ( hy2 ); late-flowering ( co, gi. fca and fwa ); the hy2 and hy3 , late-flowering double mutants and the hy2, hy3 , late-flowering triple mutants. The hy mutants flower with fewer rosette leaves than the Landsberg erecta wild type under both long day and short day conditions and express this effect to a different degree in all late-flowering mutant backgrounds and under both daylengths, with the exception of fca under short days. The number of cauline leaves and days to flowering is less affected by the hy genotype. The hy2, hy3 double mutants flower with even fewer rosette leaves than the hy2 and hy3 monogenic mutants, suggesting an inhibitory role for phytochrome B and other stable phytochromes on flowering. The complex interaction between phytochrome, daylength and the effect of the late-flowering genes on the various parameters that describe the transition to flowering in Arabidopsis is discussed.  相似文献   

5.
The photocontrol of hypocotyl elongation has been studied in two transgenic lines of Arabidopsis thaliana which contain elevated levels of phytochrome B encoded by either an introduced rice- or Arabidopsis -derived cDNA driven by the 35S CaMV promoter. Inhibition of hypocotyl growth in etiolated seedlings of the phyB -transformed lines was saturated at photon fluence rates of continuous red light (R) which were markedly lower than those required for inhibition of growth in seedlings of the isogenic wild-type (WT). Inhibition of hypocotyl growth in etiolated seedlings of the phyB -transgenic lines under continuous far-red irradiation (FR), however, showed the same relationship with fluence rate as WT. Light-grown seedlings of the phyB -transgenic lines responded to end-of-day FR by an acceleration of growth, in a manner comparable with WT. This response was unaltered when the end-of-day FR was extended from a 15 min pulse to 14 h of continuous irradiation. The response of light-grown, phyB -transformed seedlings to decreasing R:FR ratio was also qualitatively similar to WT, i.e. increased elongation growth of the hypocotyl and petioles occurred under low R:FR quantum ratio. However, absolute elongation growth was markedly less in the transgenic seedlings at all R:FR ratios tested than in WT. Together, these data indicate that seedlings over-expressing phytochrome B are more responsive to R than are WT, but are unaltered in their responsiveness to FR. By contrast, seedlings overexpressing phytochrome A are more responsive than WT to both R and FR; whereas the phytochrome B-deficient mutant hy3 is unresponsive to R while retaining WT-like responsiveness to FR. These data indicate that in WT etiolated seedlings phytochrome A mediates the effects of continuous FR, and phytochrome B the effects of continuous R. The evidence thus supports the conclusion that these two molecular species of the photoreceptor have differential regulatory roles in the plant.  相似文献   

6.
The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies.  相似文献   

7.
The expression of the Arabidopsis ATHB-2 gene is light-regulated both in seedlings and in adult plants. The gene is expressed at high levels in rapidly elongating etiolated seedlings and is down-regulated by a pulse of red light (R) through the action of a phytochrome other than phytochrome A or B, or by a pulse of far-red light (FR) through the action of phytochrome A. In green plants, the expression of the ATHB-2 gene is rapidly and strongly enhanced by lowering the R:FR ratio perceived by a phytochrome other than A or B. Returning the plant to a high R:FR ratio results in an equally rapid decrease of the ATHB-2 mRNA. Consistently, plants overproducing ATHB-2 show developmental phenotypes characteristic of plants grown in low R:FR: elongated petioles, reduced leaf area, early flowering, and reduced number of rosette leaves. Taken together, the data strongly suggest a direct involvement of ATHB-2 in light-regulated growth phenomena throughout Arabidopsis development.  相似文献   

8.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

9.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

10.
The family of phytochrome photoreceptors mediates stem-elongation responses to ambient ratios of red?:?far-red light (R?:?FR). Although phytochrome genes are expressed in flowers in addition to vegetative parts, nothing is known about floral plasticity to R?:?FR or the pleiotropic effects of phytochrome genes on flowers. Here, the following floral morphologies were compared: (1) wild-type Arabidopsis thaliana and Brassica rapa plants experiencing high R?:?FR characteristic of sunlight vs. low R?:?FR typical of foliar shade and (2) wild-type and phytochrome-deficient A. thaliana plants. Wild-type A. thaliana exposed to low R?:?FR had diminished petal and pistil lengths but longer filaments for a given petal size than plants experiencing high R?:?FR. Brassica rapa plants had qualitatively similar responses. In comparison to wild-type A. thaliana, mutants lacking phytochrome A had smaller flowers (smaller petals, pistils, and filaments), whereas phytochrome B-deficient mutants exhibited longer filament lengths. These results provide the first evidence that R?:?FR and phytochromes affect floral phenotypes in addition to vegetative ones. Although the ecological relevance remains to be established, the observed plasticity of flowers to R?:?FR may be relevant to individual fitness in some species because stigma and filament positions can affect pollen removal and levels of self-pollination.  相似文献   

11.
J J Casal 《Plant physiology》1996,112(3):965-973
We sought to determine if phytochrome B (phyB)-mediated responses to the red light (R)/far-red light (FR) ratio are affected by phytochrome A (phyA) activity in light-grown seedlings of Arabidopsis thaliana. Pulses of FR delayed into the dark period were less effective than end-of-day (EOD) FR in promoting hypocotyl growth over a given period in darkness. White light minus blue light interposed instead of darkness between the end of the white-light photoperiod and the FR pulse was sufficient to maintain responsivity to the decrease in phyB in FR-light-absorbing form in wild-type (WT) seedlings, but not in the phyA mutant. Compared with EOD R, hourly R+FR pulses provided throughout the night caused a stronger promotion of stem growth than a single EOD R+FR pulse in WT Arabidopsis, cucumber, mustard, sunflower, tobacco, and tomato, but not in phyA Arabidopsis or in the aurea mutant of tomato. WT seedlings of Arabidopsis responded to a range of high EOD R/FR ratios, whereas the phyA mutant required stronger reductions in the EOD R/FR ratio. In sunlight, phyA seedlings of Arabidopsis showed no response to the "early warning" signals of neighboring vegetation, and hypocotyl-growth promotion occurred at higher plant densities than in the WT. Thus, under a series of light conditions, the sensitivity or responsivity to reductions in the R/FR ratio were larger in WT than in phyA seedlings. A product of phyA is therefore proposed to enhance the hypocotyl-growth response to decreases in phyB in FR-light-absorbing form in light grown seedlings.  相似文献   

12.
A novel elongated mutant has been isolated from EMS-mutagenized populations of the Arabidopsis thaliana ga4 mutant. After backcrossing with the Landsberg erecta ( Ler ) wild-type (WT) followed by selling, the mutant phenotype was identified in the GA4 background. Seedlings of the mutant, which has been named elg (elongated), are characterized by elongated hypocotyls and petioles, leaves that are narrow and somewhat epinastic and early flowering. Allelism tests with the hy1–hy5 mutants indicate that elg is not allelic with any of these long-hypocotyl mutants. From linkage analyses, the location of elg on chromosome 4, between cer2 and ap2 has been established. The pleiotropic phenotype of elg seedlings is suggestive of a disruption of phytochrome and/or gibberellin (GA) function. Although the elg mutant displays a light-dependent long-hypocotyl phenotype, elg seedlings retain a full range of photomorphogenic responses and the elg mutation acts additively with the photomorphogenic mutants phyB, hy1 and hy2 . This suggests that ELG acts independently of phytochrome action. The elg mutation partially suppresses the effect of GA-deficiency on elongation growth, and, although elg ga1 seedlings are more elongated than ga1 seedlings, both genotypes respond in the same way to applied GA. That applied GA and the elg mutation interact additively suggests that ELG acts independently of GA action.  相似文献   

13.
Plants perceive red (R) and far-red (FR) light signals using the phytochrome family of photoreceptors. In Arabidopsis thaliana, five phytochromes (phyA-phyE) have been identified and characterized. Unlike other family members, phyA is subject to rapid light-induced proteolytic degradation and so accumulates to relatively high levels in dark-grown seedlings. The insensitivity of phyA mutant seedlings to prolonged FR and wild-type appearance in R has led to suggestions that phyA functions predominantly as an FR sensor during the early stages of seedling establishment. The majority of published photomorphogenesis experiments have, however, used <50 micromol m(-2) sec(-1) of R when characterizing phytochrome functions. Here we reveal considerable phyA activity in R at higher (>160 micromol m(-2) sec(-1)) photon irradiances. Under these conditions, plant architecture was observed to be largely regulated by the redundant actions of phytochromes A, B and D. Moreover, quadruple phyBphyCphyDphyE mutants containing only functional phyA displayed R-mediated de-etiolation and survived to flowering. The enhanced activity of phyA in continuous R (Rc) of high photon irradiance correlates with retarded degradation of the endogenous protein in wild-type plants and prolonged epifluorescence of nuclear-localized phyA:YFP in transgenic lines. Such observations suggest irradiance-dependent 'photoprotection' of nuclear phyA in R, providing a possible explanation for the increased activity observed. The discovery that phyA can function as an effective irradiance sensor, even in light environments that establish a high Pfr concentration, raises the possibility that phyA may contribute significantly to the regulation of growth and development in daylight-grown plants.  相似文献   

14.
The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of β-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h−1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h−1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.  相似文献   

15.
The stomatal response to blue light (BL) in wheat seedlings ( Triticum aestivum L. cv. Starke II, Weibull) was enhanced by background red light (R). This enhancement was only slightly affected by the addition of background far-red light (FR). Under similar light treatments, the addition of FR induced a 43% transformation from the far-red-absorbing form towards the red-absorbing form of phytochrome from etiolated oat ( Avena sativa L. cv. Sol II), immobilized on phenyl-sepharose. Furthermore, the enhancement of the stomatal BL-response by 15 min R was not reversed by a subsequent irradiation with 5 min FR. It is concluded that the red-light-enhancement of the stomatal blue-light-response in wheat seedlings does not involve a change in the photostationary state of phytochrome.  相似文献   

16.
Flowering in Arabidopsis is accelerated by a reduced ratio of red light to far-red light (R/FR), which indicates the proximity of competitive vegetation. By exploiting the natural genetic variation in flowering time responses to low R/FR, we obtained further insight into the complex pathways that fine-tune the transition to flowering in Arabidopsis. The Bla-6 ecotype does not flower significantly earlier in response to low R/FR, but is still able to display other features of shade avoidance, suggesting branching of low R/FR signalling. Here we show that the muted flowering response of Bla-6 is due to high levels of the floral repressor FLOWERING LOCUS C (FLC), conferred by a combination of functional FLC and FRIGIDA ( FRI ) alleles with a 'weak' FY allele. The Bla-6 FY allele encodes a protein with a corrupted WW binding domain, and we provide evidence that this locus plays a key role in the natural variation in light quality-induced flowering in Arabidopsis. In Bla-6, FLC blocks promotion to flowering by reduced R/FR by inhibiting expression of the floral integrator FLOWERING LOCUS T ( FT ) in a dose-dependent manner. Reduction of FLC removes this obstruction, and Bla6 plants then exhibit strong induction of FT and flower early in response to a low R/FR signal. This paper illustrates the intricate interaction of environmental signals and genetic factors to regulate flowering in Arabidopsis.  相似文献   

17.
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red light, conditions that induce strong shade-avoidance reactions in wild-type plants. This indicates that phyB plays an important role in the control of shade avoidance. In Arabidopsis phyB and phyD are the products of a recently duplicated gene and share approximately 80% identity. We investigated the role played by phyD in shade avoidance by analyzing the responses of phyD-deficient mutants. Compared with the monogenic phyB mutant, the phyB-phyD double mutant flowers early and has a smaller leaf area, phenotypes that are characteristic of shade avoidance. Furthermore, compared with the monogenic phyB mutant, the phyB-phyD double mutant shows a more attenuated response to a reduced R/FR for these responses. Compared with the phyA-phyB double mutant, the phyA-phyB-phyD triple mutant has elongated petioles and displays an enhanced elongation of internodes in response to end-of-day far-red light. These characteristics indicate that phyD acts in the shade-avoidance syndrome by controlling flowering time and leaf area and that phyC and/or phyE also play a role.  相似文献   

18.
We have isolated phytochrome B (phyB) and phyC mutants from rice (Oryza sativa) and have produced all combinations of double mutants. Seedlings of phyB and phyB phyC mutants exhibited a partial loss of sensitivity to continuous red light (Rc) but still showed significant deetiolation responses. The responses to Rc were completely canceled in phyA phyB double mutants. These results indicate that phyA and phyB act in a highly redundant manner to control deetiolation under Rc. Under continuous far-red light (FRc), phyA mutants showed partially impaired deetiolation, and phyA phyC double mutants showed no significant residual phytochrome responses, indicating that not only phyA but also phyC is involved in the photoperception of FRc in rice. Interestingly, the phyB phyC double mutant displayed clear R/FR reversibility in the pulse irradiation experiments, indicating that both phyA and phyB can mediate the low-fluence response for gene expression. Rice is a short-day plant, and we found that mutation in either phyB or phyC caused moderate early flowering under the long-day photoperiod, while monogenic phyA mutation had little effect on the flowering time. The phyA mutation, however, in combination with phyB or phyC mutation caused dramatic early flowering.  相似文献   

19.
The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the over-expressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants.  相似文献   

20.
The physiological responses of transgenic tobacco (Nicotiana tabacum L.) plants that express high levels of an introduced oat (Avena sativa L.) phytochrome (phyA) gene to various light treatments are compared with those of wild-type (WT) plants. Seeds, etiolated seedlings, and light-grown plants from a homozygous transgenic tobacco line (9A4) constructed by Keller et al. (EMBO J, 8, 1005–1012, 1989) were treated with red (R), far-red (FR), or white light (WL) with or without supplemental FR light, revealing major perturbations of the normal photobiological responses. White light stimulated germination of both WT and transgenic seed, but addition of FR to the WL treatment suppressed germination. In the WT, all fluence rates tested inhibited germination, but in the transgenics, reduction effluence rate partially relieved germination from the FR-mediated inhibition. It is suggested that the higher absolute levels of the FR-absorbing form of phytochrome (Pfr) in the irradiated transgenics, compared to the WT, may be responsible for the reduced FR-mediated inhibition of germination in the former. Hypocotyl extension of dark-grown seedlings of both WT and transgenic lines was inhibited by continuous R or FR irradiation, typical of the high-irradiance response (HIR). After 2 d of de-etiolation in WL, the WT seedlings had lost the FR-mediated inhibition of hypocotyl extension, whereas it was retained in the transgenics. The FR-mediated inhibition of hypocotyl extension in the transgenic seedlings after de-etiolation may reflect the persistence of an, FR-HIR response mediated by the overexpressed oat PhyA phytochrome. Light-grown WT seedlings exhibited typical shade-avoidance responses when treated with WL supplemented with high levels of FR radiation. Internode and petiole extension rates were markedly increased, and the chlorophyll ab ratio decreased, in the low-R: FR treatment. The transgenics, however, showed no increases in extension growth under low-R: FR treatments, and at low fluence rates both internode and petiole extension rates were significantly decreased by low R FR. Interpretation of these data is difficult. The depression of the chlorophyll ab ratio by low R FR was identical in WT and transgenic plants, indicating that not all shade-avoidance responses of light-grown plants were disrupted by the over-expression of the introduced oat phyA gene. The results are discussed in relation to the proposal that different members of the phytochrome family may have different physiological roles.Abbreviations FR far-red light - PAR photosynthetically active radiation - Pr, Pfr red- and FR-absorbing forms of phytochrome - Ptot total phytochrome - PhyA (PhyA) gene (encoded protein) for phytochrome - R red light - WL white light - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.C.M.; the production of the transgenic seed was funded by the U.S. Department of Energy (DE-F602-88ER13968) to R.D.V., and by E.I. du Pont de Nemours; Dr. G.C. Whitelam is thanked for the provision of monoclonal antibodies for the immunoblot analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号