首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
KWESIGA  F.; GRACE  J. 《Annals of botany》1986,57(3):283-290
The West African species Khaya senegalensis and Terminalia ivorensiswere grown in a controlled environment, varying the photon fluxdensity in the range 18–610 µmol m–2 s–1and the red/far-red ratio over an appropriate range to simulatethe shade of a tree canopy versus unattenuated daylight. Theshade tolerant seedlings of Khaya were relatively insensitiveto the red/far-red ratio. The light demanding Terminalia wasconsiderably affected: when the ratio was low the specific leafarea was increased and the leaves produced were very much largerin area. Thus, the Leaf Area Ratio was enhanced and the plantsdisplayed an increase in Relative Growth Rate. Khaya, Terminalia, tropical trees, shade, red/far-red ratio  相似文献   

4.
Evans LT  Heide OM  King RW 《Plant physiology》1986,80(4):1025-1029
The semidian (~12 h) periodicity in the effect of far-red (FR) interruptions of the light period preceding inductive darkness on flowering in Pharbitis nil appears to be mediated by phytochrome: (a) promotion by interruptions 2 hours before inductive darkness (−2 hours) and inhibition at −8 hours are greater the higher the proportion of FR/R+FR during the interruption; (b) brief FR exposures followed by darkness are even more effective than FR throughout; (c) the effect of brief FR is reversed by subsequent R; (d) R interruptions of an FR background are most promotive at −8 hours, when FR is most inhibitory. Promotive FR interruptions at −2 or −14 hours shorten the critical dark period whereas inhibitory FR interruptions at −8 hours lengthen it. We conclude that the semidian rhythm is controlled by a `timing pool' of phytochrome FR absorbing form (Pfr) which disappears rapidly in darkness: four different estimates from our experiments indicate that Pfr was reduced to the level set by FR within 20 to 45 minutes in darkness. However, flowering may also be influenced by a `metabolic pool' of Pfr with a delayed loss in darkness, the time of which can be advanced or retarded by shifting the semidian rhythm.  相似文献   

5.
Flowering time, a critical adaptive trait, is modulated by several environmental cues. These external signals converge on a small set of genes that in turn mediate the flowering response. Mutant analysis and subsequent molecular studies have revealed that one of these integrator genes, FLOWERING LOCUS T (FT), responds to photoperiod and temperature cues, two environmental parameters that greatly influence flowering time. As the central player in the transition to flowering, the protein coding sequence of FT and its function are highly conserved across species. Using QTL mapping with a new advanced intercross-recombinant inbred line (AI-RIL) population, we show that a QTL tightly linked to FT contributes to natural variation in the flowering response to the combined effects of photoperiod and ambient temperature. Using heterogeneous inbred families (HIF) and introgression lines, we fine map the QTL to a 6.7 kb fragment in the FT promoter. We confirm by quantitative complementation that FT has differential activity in the two parental strains. Further support for FT underlying the QTL comes from a new approach, quantitative knockdown with artificial microRNAs (amiRNAs). Consistent with the causal sequence polymorphism being in the promoter, we find that the QTL affects FT expression. Taken together, these results indicate that allelic variation at pathway integrator genes such as FT can underlie phenotypic variability and that this may be achieved through cis-regulatory changes.MOLECULAR analysis of the phenotypic variation in life history traits is key to understanding how plants evolve in diverse natural environments. Among such traits, flowering time is critical for the reproductive success of the plant and is highly variable among natural Arabidopsis thaliana strains, providing an attractive paradigm for studying adaptive evolution (Johanson et al. 2000; Hagenblad and Nordborg 2002; Stinchcombe et al. 2004; Lempe et al. 2005; Shindo et al. 2005; Werner et al. 2005a). Two major environmental parameters that modulate flowering time are light and temperature (Koornneef et al. 1998). Temperature and light conditions vary substantially within the geographical range of A. thaliana, and natural populations presumably need to adapt to the local environment to ensure reproductive success. Flowering in A. thaliana is generally accelerated by long photoperiods, vernalization (exposure to winter-like conditions), and elevated ambient temperatures (Bäurle and Dean 2006). All these cues favor flowering of A. thaliana during spring or early summer, although the contribution from each individual cue and the interactions among them vary depending on the local environmental conditions (Wilczek et al. 2009).Flowering time is controlled through several genetic cascades that converge on a set of integrator genes including FLOWERING LOCUS T (FT), which encodes a protein that is highly conserved in flowering plants (Kardailsky et al. 1999; Kobayashi et al. 1999; Ahn et al. 2006). FT and its homologs are very likely an integral part of the mobile signal (florigen) that is produced in leaves and travels to the shoot apex to induce flowering (Abe et al. 2005; Wigge et al. 2005; Lifschitz et al. 2006; Corbesier et al. 2007; Jaeger and Wigge 2007; Lin et al. 2007; Mathieu et al. 2007; Tamaki et al. 2007; Notaguchi et al. 2008). In A. thaliana, FT expression is controlled by photoperiod, vernalization, and ambient growth temperature. Photoperiod in conjunction with the circadian clock promotes daily oscillations in FT RNA levels, which are greatly elevated at the end of long days. The central role of FT in determining the timing of flowering appears to be conserved in many species, making FT an attractive target for altering flowering time in cereals and other plants of economic importance (recently reviewed by Kobayashi and Weigel 2007; Turck et al. 2008).Wild strains of A. thaliana show extensive variation in flowering time and much of this is due to variation in the activity of the floral repressor FLOWERING LOCUS C (FLC). While some of this variation maps to FLC itself, much of it is due to differential activity at the epistatically acting FRIGIDA (FRI) locus (Michaels and Amasino 1999; Sheldon et al. 1999; Johanson et al. 2000; Michaels et al. 2003; Lempe et al. 2005; Shindo et al. 2005, 2006). Flowering is typically substantially delayed when the FRI/FLC system is active, unless these plants are first vernalized. However, FRI and FLC do not explain all of the flowering time variation seen in wild strains, and functionally divergent alleles of several additional flowering regulators, including CRYPTOCHROME 2 (CRY2), HUA2, FLOWERING LOCUS M (FLM), PHYTOCHROME C (PHYC), and PHYTOCHROME D (PHYD), have been identified in different strains of A. thaliana (Aukerman et al. 1997; Alonso-Blanco et al. 1998; El-Assal et al. 2001; Werner et al. 2005b; Balasubramanian et al. 2006a; Wang et al. 2007). Finally, there are many genotype-by-environment interactions that dramatically affect the contribution of a specific locus to the overall phenotype.The study of natural variation in A. thaliana has been greatly facilitated through the use of recombinant inbred line (RIL) populations (Koornneef et al. 2004). We have recently established two advanced intercross (AI)-RIL sets, in which the genetic map is greatly expanded, allowing for high-resolution QTL mapping (Balasubramanian et al. 2009). Here we use one of the new AI-RIL populations along with an independent F2 population to identify the molecular basis of a light and temperature-sensitive flowering time QTL that mapped to the promoter of the FT gene. We show that FT is likely the causal gene for variation in light and temperature-sensitive flowering. Our results, in combination with those from other species, suggest that cis-regulatory variation rather than structural variation at FT contributes to phenotypic variation in natural populations.  相似文献   

6.
7.
Photosynthetica - The effects of UV-B radiation (1 W m–2, 1 and 2 h) on PSII activity, chloroplast structure, and H2O2 contents in leaves of 26-d-old Arabidopsis thaliana phyA phyB double...  相似文献   

8.
Hypocotyls of dark-grown Arabidopsis seedlings exhibit strong negative gravitropism, whereas in red light, gravitropism is strongly reduced. Red/far-red light-pulse experiments and analysis of specific phytochrome-deficient mutants indicate that the red-absorbing (Pr) form of phytochrome B regulates normal hypocotyl gravitropism in darkness, and depletion of Pr by photoconversion to the far-red-absorbing form attenuates hypocotyl gravitropism. These studies provide genetic evidence that the Pr form of phytochrome has an active function in plant development.  相似文献   

9.
We examined whether spectrally active phytochrome A (PhyA) and phytochrome B (PhyB) play specific roles in the induction of seed germination in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutants, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102: 269-277) and hy3-Bo64 (J. Reed, P.Nagpal, D.S. Poole, M. Furuya, J. Chory [1993] Plant Cell 5: 147-157). When dormant seeds of each genotype imbibed in the dark on aqueous agar plates, the hy3 (phyB) mutant did not germinate, whereas the fre1 (phyA) mutant germinated at a rate of 50 to 60%, and the wild type (WT) germinated at a rate of 60 to 70%. By contrast, seeds of all genotypes germinated to nearly 100% when plated in continuous irradiation with white or red light. When plated in continuous far-red light, however, frequencies of seed germination of the WT and the fre1 and hy3 mutants averaged 14, nearly 0, and 47%, respectively, suggesting that PhyB in the red-absorbing form prevents PhyA-dependent germination under continuous far-red light. When irradiated briefly with red or far-red light after imbibition for 1 h, a typical photoreversible effect on seed germination was observed in the fre1 mutant and the WT but not in the hy3 mutant. In contrast, when allowed to imbibe in the dark for 24 to 48 h and exposed to red light, the seed germination frequencies of the hy3 mutant were more than 40%. Immunoblot analyses of the mutant seeds showed that PhyB apoprotein accumulated in dormant seeds of the WT and the fre1 mutant as much as in the seeds that had imbibed. In contrast, PhyA apoprotein, although detected in etiolated seedlings grown in the dark for 5 d, was not detectable in the dormant seeds of the WT and the hy3 mutant. The above physiological and immunochemical evidence indicates that PhyB in the far-red-absorbing form was stored in the Arabidopsis seeds and resulted in germination in the dark. Hence, PhyA does not play any role in dark germination but induces germination under continuous irradiation with far-red light. Finally, we examined seeds from a signal transduction mutant, det1, and a det1/hy3 double mutant. The det1 seeds exhibited photoreversible responses of germination on aqueous agar plates, and the det1/hy3 double mutant seeds did not. Hence, DET1 is likely to act in a distinct pathway from PhyB in the photoregulation of seed germination.  相似文献   

10.
11.
The wavelength dependence for a radiation induced increase of phytochrome in mung bean hooks (Vigna radiata L.), preirradiated with red light, was determined between 640 to 800 nm. Radiation between 640 to 700 nm and 780 to 800 nm had little effect on phytochrome concentration in hooks pretreated with red. Two bands of far-red light, one at 710 nm and the other at 750 to 760 nm, were found to increase phytochrome content about four times. Besides the requirement for a photochemical process, one or more dark processes appear to be necessary for the induction of phytochrome increase.  相似文献   

12.
Casal, J. J., Sáchez, R. A. and Deregibus, V. A. 1987.Tillering responses of Lolium multiflorum plants to changesof red/far-red ratio typical of sparse canopies.—J. exp.Bot. 38: 1432–1439. Plants of Lolium multiflorum were grown either in growth roomsunder radiation sources providing equivalent PAR but differentR/FR ratios between 0·46 and 2·36, or under sunlightsupplemented with a series of small fluence rates of FR throughoutthe photoperiod. In both kinds of experiments a reduction oftillering was found along with small depressions of R/FR ratiobelow the values typical of sunlight. In this range both thesquare-root-transformed rate of tillering and the site-fillingrate were linearly related to the estimated phytochrome photo-equilibriaand the slope was very steep under conditions that allowed hightillering rates. The addition of low fluence rates of red lightat the base of the shoots raised tillering of plants exposedto low R/FR ratios to the level of plants grown under high R/FRratios in spite of the ratios received by the rest of the plant.Moreover, irradiation of plant bases with intermediate-low R/FRratios reduced tillering indicating that this would be one siteof perception. These results show a high sensitivity to changesof R/FR ratio typical of different degrees of shade in sparsecanopies. This suggests that by monitoring these changes Loliummultiflorum plants would be able to perceive an anticipatedsignal of impending competition in growing canopies.  相似文献   

13.
Immunoblot analysis using a monoclonal antibody specific tophytochrome B (phyB) suggest that this protein is undetectablein the hy3 mutant of Arabidopsis. Photophysiological experimentsrevealed that hy3 mutants do not display end-of-day far-redgrowth responses. Thus, this particular phytochrome responseseems to be mediated in large part by phyB. (Received September 20, 1991; Accepted September 26, 1991)  相似文献   

14.
The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the over-expressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants.  相似文献   

15.
In open places, plants are exposed to higher fluence rates of photosynthetically active radiation and to higher red to far-red ratios than under the shade of neighbor plants. High fluence rates are known to increase stomata density. Here we show that high, compared to low, red to far-red ratios also increase stomata density in Arabidopsis (Arabidopsis thaliana). High red to far-red ratios increase the proportion of phytochrome B (phyB) in its active form and the phyB mutant exhibited a constitutively low stomata density. phyB increased the stomata index (the ratio between stomata and epidermal cells number) and the level of anphistomy (by increasing stomata density more intensively in the adaxial than in the abaxial face). phyB promoted the expression of FAMA and TOO MANY MOUTHS genes involved in the regulation of stomata development in young leaves. Increased stomata density resulted in increased transpiration per unit leaf area. However, phyB promoted photosynthesis rates only at high fluence rates of photosynthetically active radiation. In accordance to these observations, phyB reduced long-term water-use efficiency estimated by the analysis of isotopic discrimination against 13CO2. We propose a model where active phyB promotes stomata differentiation in open places, allowing plants to take advantage of the higher irradiances at the expense of a reduction of water-use efficiency, which is compensated by a reduced leaf area.Photosynthesis, transpiration, and transpiration efficiency, the ratio of carbon fixation to water loss, are key physiological traits considered by plant breeders when selecting productive and water-use efficient plants (Rebetzke et al., 2002; Richards, 2006; Passioura, 2007). Opening of the stomata allows the uptake of CO2 necessary for photosynthesis but it simultaneously increases the loss of water and the potential deterioration of the water status. Plants are finely tuned to efficiently face this dilemma. Under low levels of photosynthetically active radiation (PAR), stomata open just enough to prevent the limitation of photosynthesis by CO2 influx and the photochemical phase of photosynthesis is the limiting step. If PAR increases, allowing higher rates of photochemical reactions, which leads to more ATP and NADPH, stomatal conductance also increases to allow sufficient CO2 to use these products in the Calvin cycle (Donahue et al., 1997; Yu et al., 2004). If instead of following this response coordinated to photosynthetic rates, stomata opened maximally in response to low PAR, more CO2 than needed would be allowed to reach the chloroplast at the expense of unnecessary water loss.Canopy shade light is characterized not only by reduced PAR levels but also by a reduced proportion of red light (R) compared to far-red light (FR) caused by the selective absorption of visible light by photosynthetic pigments and the reflection and transmission of FR (Holmes and Smith, 1977a). This low R/FR ratio compared to unfiltered sunlight is perceived by phytochromes (Smith, 1982; Ballaré et al., 1987; Pigliucci and Schmitt, 1999), mainly phytochrome B (phyB; Yanovsky et al., 1995). In Arabidopsis (Arabidopsis thaliana), the high R/FR signals perceived by phyB decrease the length of the stem and petioles, cause a more prostrate position of the leaves, and promote branching and delay flowering, among other responses (Reed et al., 1993; Franklin and Whitelam, 2005).Transgenic plants of potato (Solanum tuberosum) expressing the PHYB gene of Arabidopsis show higher stomatal conductance, transpiration rates, and photosynthesis rates per unit leaf area than the wild type (Thiele et al., 1999; Boccalandro et al., 2003; Schittenhelm et al., 2004). Stomata density is unaffected, indicating that phyB enhances the aperture of the stomatal pore in these transgenic plants. Stomatal conductance is higher in Fuchsia magellanica plants exposed to R than to FR pulses at the end of the photoperiod (Aphalo et al., 1991). However, there are no general effects of R/FR treatments on the aperture of the stomatal pore. The stomata of Commelina communis (Roth-Bejerano, 1981) and of the orchid of the genus Paphiopedilum (Talbott et al., 2002) open in response to R and this effect is reversed by FR, indicating a control by phytochrome. Nevertheless, this FR reversal of the effect of R is absent in wild-type Arabidopsis (Talbott et al., 2003). In Phaseolus vulgaris, FR accelerates stomatal movements during dark to light (opening) and light to dark (closing) transitions and this effect is R reversible, but phytochrome status has no effects under constant conditions of light or darkness (Holmes and Klein, 1985). In the latter species, prolonged FR added to a white-light background promotes stomatal conductance but this effect cannot be ascribed to phytochrome (Holmes et al., 1986).In addition to this rapid adjustment of the CO2 and water vapor fluxes to daily fluctuations in light levels via the regulation of the stomatal pore aperture, plants acclimate to the prevailing PAR conditions by changing stomatal density (number of stomata per unit area) and stomatal index (the ratio between the number of stomata in a given area and the total number of stomata and other epidermal cells in that same area). Stomatal density and stomatal index are higher in plants grown in full sunlight at high levels of PAR than in plants grown in shade (Willmer and Fricker, 1996; Lake et al., 2001; Thomas et al., 2004; Casson and Gray, 2008). Mature leaves sense the environment (light intensity and CO2) and produce a systemic signal that regulates stomatal density and index in young leaves (Coupe et al., 2006). A change in CO2 concentrations or PAR levels affects photosynthesis and therefore it was suggested that a metabolic compound associated to this process (i.e. a sugar) may regulate stomatal development (Coupe et al., 2006). However, there is no correlation between photosynthetic rate and stomatal index in poplar (Populus spp.; Miyazawa et al., 2006) and transgenic anti-small subunit of Rubisco tobacco (Nicotiana tabacum) plants, show reduced photosynthesis and normal responses of stomatal density and stomatal index to PAR, suggesting that other photoreceptors could be involved in this regulation (Baroli et al., 2008).Here we demonstrate that high, compared to low, R/FR ratios perceived by phyB increase stomata density, stomata index, and amphistomy in the leaves of Arabidopsis. This behavior results in an enhanced photosynthetic rate at high PAR at the expense of reduced water-use efficiency.  相似文献   

16.
Although most allelochemicals can potentially cause growth inhibition in receiver plants, there is little information available about the absorption of these allelochemicals by the receiver plants. The present research describes the absorption of momilactone A and B by Arabidopsis thaliana (L.) and effects of the absorption on Arabidopsis growth. Exogenously applied momilactone A and B inhibited the growth of Arabidopsis hypocotyls and roots at concentrations greater than 10 and 1μmol/L, respectively. The levels of momilactone A and B in Arabidopsis hypocotyls were approximately 3.2 and 2.4% of momilactone A and B, respectively, in the medium and those in Arabidopsis roots were about 3.9-3.4%, respectively. The absorption rates of momilactone A and B by Arabidopsis were not significantly different. The present research suggests that momilactone A and B may be absorbed in proportion to their applied levels, and the growth inhibitory effects of momilactone A and B may also correlated with their endogenous levels. However, the effectiveness of momilactone B on growth inhibition was much greater than that of momilactone A, and the sensitivities of hypocotyls to momilactone A and B were greater than those of roots. This is the first report describing the absorption of potent rice allelochemicals, momilactone A and B by receiver plants.  相似文献   

17.
18.
Heide OM  King RW  Evans LT 《Plant physiology》1986,80(4):1020-1024
Evidence is presented of an endogenous rhythm in flowering response to far-red (FR) irradiation, with a period of about 12 h (hence semidian rhythm), which persists through at least three cycles in constant conditions of continuous light at 27°C and has a marked influence on the flowering response in Pharbitis nil to a subsequent inductive dark period. The phase of the rhythm is not influenced by real time nor by the time from imbibition or from the beginning of the light period. Rather, it is fed forward from the beginning of the FR interruption to the beginning of the inductive dark period. The period of the rhythm is not affected by irradiance but is longer at cooler temperature. When there are two FR interruptions during the preceding light period, it is primarily the later one which determines the phase of the rhythm, although some interactions are evident. There appears to be an abrupt rephasing of the rhythm at the beginning of the inductive dark period. No overt rhythms which could be used as “clock hands” for the semidian rhythm were detected in photosynthesis, stomatal opening, or translocation.  相似文献   

19.
以拟南芥为材料,统计PRRs (pseudo-response regulators)突变体 prr5及其野生型经ABA处理后的萌发率、根长和NaCl处理后的萌发率,并采用实时定量PCR方法,对不同浓度ABA处理的拟南芥幼苗中的PRR5基因表达进行分析.结果表明:prr5突变体对ABA弱敏感,其种子萌发率比野生型显著或极显著增高,主根比野生型长,且PRR5基因表达受ABA抑制.同时,NaCl处理后,prr5的萌发率比野生型极显著增高.因此,推测prr5可能为ABA信号通路相关基因.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号