首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-associated guanylate kinase homologs (MAGUKs) are multidomain proteins found to be central organizers of cellular junctions. In this study, we examined the molecular mechanisms that regulate the interaction of the MAGUK SAP97 with its GUK domain binding partner GKAP (GUK-associated protein). The GKAP-GUK interaction is regulated by a series of intramolecular interactions. Specifically, the association of the Src homology 3 (SH3) domain and sequences situated between the SH3 and GUK domains with the GUK domain was found to interfere with GKAP binding. In contrast, N-terminal sequences that precede the first PDZ domain in SAP97, facilitated GKAP binding via its association with the SH3 domain. Utilizing crystal structure data available for PDZ, SH3 and GUK domains, molecular models of SAP97 were generated. These models revealed that SAP97 can exist in a compact U-shaped conformation in which the N-terminal domain folds back and interacts with the SH3 and GUK domains. These models support the biochemical data and provide new insights into how intramolecular interactions may regulate the association of SAP97 with its binding partners.  相似文献   

2.
Craven SE  El-Husseini AE  Bredt DS 《Neuron》1999,22(3):497-509
During synaptic development, proteins aggregate at specialized pre- and postsynaptic structures. Mechanisms that mediate protein clustering at these sites remain unknown. To investigate this process, we analyzed synaptic targeting of a postsynaptic density protein, PSD-95, by expressing green fluorescent protein- (GFP-) tagged PSD-95 in cultured hippocampal neurons. We find that postsynaptic clustering relies on three elements of PSD-95: N-terminal palmitoylation, the first two PDZ domains, and a C-terminal targeting motif. In contrast, disruptions of PDZ3, SH3, or guanylate kinase (GK) domains do not affect synaptic targeting. Palmitoylation is sufficient to target the diffusely expressed SAP-97 to synapses, and palmitoylation cannot be replaced with alternative membrane association motifs, suggesting that a specialized synaptic lipid environment mediates postsynaptic clustering. The requirements for PDZ domains and a C-terminal domain of PSD-95 indicate that protein-protein interactions cooperate with lipid interactions in synaptic targeting.  相似文献   

3.
hDlg is the human homolog of the Drosophila Discs-large tumor suppressor. As a member of the MAGUK (membrane-associated guanylate kinase) family of scaffolding proteins, hDlg is composed of three PDZ (PSD-95, Dlg, and ZO-1) repeats, an SH3 (Src homology 3) motif, and a GUK (guanylate kinase-like) domain. Additionally, hDlg contains two regions of alternative splicing. Here we identify a novel insertion, I1B, located N-terminal to the PDZ repeats. We further analyze the tissue-specific combinations of insertions and correlate those results with the distribution of protein isoforms. We also identify the functions of the two alternatively spliced regions. The N-terminal alternatively spliced region is capable of binding several SH3 domains and also moderates the level of protein oligomerization. Insertions in the second region are responsible for determining the localization of hDlg, with insertion I3 targeting the protein to the membrane regions of cell-cell contact and insertion I2 targeting the protein to the nucleus.  相似文献   

4.
BACKGROUND: Membrane-associated guanylate kinases (MAGUKs), such as Discs-Large (DLG), play critical roles in synapse maturation by regulating the assembly of synaptic multiprotein complexes. Previous studies have revealed a genetic interaction between DLG and another PDZ scaffolding protein, SCRIBBLE (SCRIB), during the establishment of cell polarity in developing epithelia. A possible interaction between DLG and SCRIB at synaptic junctions has not yet been addressed. Likewise, the biochemical nature of this interaction remains elusive, raising questions regarding the mechanisms by which the actions of both proteins are coordinated. RESULTS: Here we report the isolation of a new DLG-interacting protein, GUK-holder, that interacts with the GUK domain of DLG and which is dynamically expressed during synaptic bouton budding. We also show that at Drosophila synapses DLG colocalizes with SCRIB and that this colocalization is likely to be mediated by direct interactions between GUKH and the PDZ2 domain of SCRIB. We show that DLG, GUKH, and SCRIB form a tripartite complex at synapses, in which DLG and GUKH are required for the proper synaptic localization of SCRIB. CONCLUSIONS: Our results provide a mechanism by which developmentally important PDZ-mediated complexes are associated at the synapse.  相似文献   

5.
PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288: C20–C29, 2005; doi:10.1152/ajpcell.00368.2004.—The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes. retention of apical and basolateral membrane proteins; transducisomes; protein complex formation  相似文献   

6.
Zhang Z  Li H  Chen L  Lu X  Zhang J  Xu P  Lin K  Wu G 《PloS one》2011,6(8):e23507
The human Discs Large 1 (DLG1) protein uses two of its three PDZ domains to interact with the C-terminal peptide of the Adenomatous Polyposis Coli (APC) tumor suppressor protein. The DLG1/APC complex inhibits the cell cycle progression from the G0/G1 to the S phase, regulates epithelial cell migration and morphogenesis, and is required for polarization of the microtubule cytoskeleton. However, the molecular details of how DLG1 recognizes APC is not clear. In this study, we performed biochemical and biophysical assays to investigate the interactions between PDZ domains of DLG1 and the C-terminal peptide of APC. In addition, we determined the crystal structures of the PDZ1 and PDZ2 domains of DLG1 each in complex with the C-terminal 11-residue peptide of APC. Our biochemical, biophysical, and structural results revealed structural elements and residues on PDZ1 and PDZ2 domains of DLG1 and on APC crucial for their mutual interaction. In particular, our results show that the β2/β3 loops of PDZ1 and PDZ2 play important roles in contributing to the binding affinities between PDZ domains and APC, through interacting with the residues upstream of the canonical PDZ-binding S/T-X-V motif. The results provide new insights into the binding mode of a defined C-terminal segment of APC by the PDZ domains of DLG1.  相似文献   

7.
Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe(-2) and Ser(-3) residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.  相似文献   

8.
The postsynaptic density extends across the postsynaptic dendritic spine with discs large (DLG) as the most abundant scaffolding protein. DLG dynamically alters the structure of the postsynaptic density, thus controlling the function and distribution of specific receptors at the synapse. DLG contains three PDZ domains and one important interaction governing postsynaptic architecture is that between the PDZ3 domain from DLG and a protein called cysteine-rich interactor of PDZ3 (CRIPT). However, little is known regarding functional evolution of the PDZ3:CRIPT interaction. Here, we subjected PDZ3 and CRIPT to ancestral sequence reconstruction, resurrection, and biophysical experiments. We show that the PDZ3:CRIPT interaction is an ancient interaction, which was likely present in the last common ancestor of Eukaryotes, and that high affinity is maintained in most extant animal phyla. However, affinity is low in nematodes and insects, raising questions about the physiological function of the interaction in species from these animal groups. Our findings demonstrate how an apparently established protein–protein interaction involved in cellular scaffolding in bilaterians can suddenly be subject to dynamic evolution including possible loss of function.  相似文献   

9.
Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions   总被引:4,自引:0,他引:4  
PDZ (Postsynaptic density protein, Disc large, Zona occludens) domains are protein-protein interaction modules that predominate in submembranous scaffolding proteins. Recently, we showed that the PDZ domains of syntenin-1 also interact with phosphatidylinositol 4,5-bisphosphate (PIP2) and that this interaction controls the recruitment of the protein to the plasma membrane. Here we evaluate the general importance of PIP2-PDZ domain interactions. We report that most PDZ proteins bind weakly to PIP2, but that syntenin-2, the closest homolog of syntenin-1, binds with high affinity to PIP2 via its PDZ domains. Surprisingly, these domains target syntenin-2 to nuclear PIP2 pools, in nuclear speckles and nucleoli. Targeting to these sites is abolished by treatments known to affect these PIP2 pools. Mutational and domain-swapping experiments indicate that high-affinity binding to PIP2 requires both PDZ domains of syntenin-2, but that its first PDZ domain contains the nuclear PIP2 targeting determinants. Depletion of syntenin-2 disrupts the nuclear speckles-PIP2 pattern and affects cell survival and cell division. These findings show that PIP2-PDZ domain interactions can directly contribute to subnuclear assembly processes.  相似文献   

10.
PDZ proteins organize multiprotein signaling complexes. According to current views, PDZ domains engage in protein-protein interactions. Here we show that the PDZ domains of several proteins bind phosphatidylinositol 4,5-bisphosphate (PIP(2)). High-affinity binding of syntenin to PIP(2)-containing lipid layers requires both PDZ domains of this protein. Competition and mutagenesis experiments reveal that the protein and the PIP(2) binding sites in the PDZ domains overlap. Overlay assays indicate that the two PDZ domains of syntenin cooperate in binding to cognate peptides and PIP(2). Experiments on living cells demonstrate PIP(2)-dependent and peptide-dependent modes of plasma membrane association of the PDZ domains of syntenin. These observations suggest that local changes in phosphoinositide concentration control the association of PDZ proteins with their target receptors at the plasma membrane.  相似文献   

11.
PDZ domains are a recently characterized protein-recognition module. In most cases, PDZ domains bind to the C-terminal end of target proteins and are thought thereby to link these target proteins into functional signaling networks. We report the isolation of artificial PDZ domains selected via a mutagenesis screen in vivo, each recognizing a different C-terminal peptide. We demonstrate that the PDZ domains isolated can bind selectively to their target peptides in vitro and in vivo. Two of the target peptides chosen are the C-terminal ends of two cellular transmembrane proteins with which no known PDZ domains have been reported to interact. By targeting these artificial PDZ domains to the nucleus, interacting target peptides were efficiently transported to the same subcellular localization. One of the isolated PDZ domains was tested and shown to be efficiently directed to the plasma membrane when cotransfected with the full-length transmembrane protein in mammalian cells. Thus, artificial PDZ domains can be engineered and used to target intracellular proteins to different subcellular compartments.  相似文献   

12.
Zonula occludens-1 (ZO-1) is a scaffolding molecule critical to the formation of intercellular adhesion structures, such as tight junctions (TJs) and adherens junctions (AJs). ZO-1 contains three PDZ domains followed by a GUK domain and a ZU5 domain. The first PDZ of ZO-1 (ZO-1(PDZ1)) serves as a protein–protein interaction module and interacts with the C-termini of almost all claudins to initiate the formation of a belt-like structure on the lateral membranes, thereby promoting TJ formation. It has been recently reported that approximately 15% of all PDZ domains bind phosphoinositides, and ZO-1(PDZ1) is the one of these. Here we report the 15N, 13C, and 1H chemical shift assignments of the first PDZ domain of mouse ZO-1. The resonance assignments obtained in this work may contribute in clarifying the interplay between the two binary interactions, ZO-1(PDZ1)–claudins and ZO-1(PDZ1)–phospholipids, and suggesting a novel regulation mechanism underlying the formation and maintenance of cell–cell adhesion machinery downstream of the phospholipid signaling pathways.  相似文献   

13.
We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.  相似文献   

14.
‘Divide and conquer’ has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions ‘extensions’. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results (http://bcz102.ust.hk/pdzex/). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.  相似文献   

15.
Syntenin-1 is a PDZ protein involved in receptor recycling and clustering. Its two PDZ domains interact with various receptors and phosphoinositides, and are flanked by N- and C-terminal regions. Here, we report the identification of an autoinhibitory peptide stretch in the N-terminus that might be regulated by phosphorylation. We further establish that basic residues in the C-terminal region mediate electrostatic interactions with reconstituted liposomes and contribute to the plasma membrane targeting. Our study adds new components to the multi-dentate membrane targeting mechanism and highlights the role of N- and C-terminal PDZ extensions in the regulation of syntenin-1 plasma membrane localization.  相似文献   

16.
PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.  相似文献   

17.
Membrane-associated guanylate kinase (MAGUK) proteins act as molecular scaffolds organizing multiprotein complexes at specialized regions of the plasma membrane. All MAGUKs contain a Src homology 3 (SH3) domain and a region homologous to yeast guanylate kinase (GUK). We showed previously that one MAGUK protein, human CASK (hCASK), is widely expressed and associated with epithelial basolateral plasma membranes. We now report that hCASK binds another MAGUK, human discs large (hDlg). Immunofluorescence microscopy demonstrates that hCASK and hDlg colocalize at basolateral membranes of epithelial cells in small and large intestine. These proteins co-precipitate from lysates of an intestinal cell line, Caco-2. The GUK domain of hCASK binds the SH3 domain of hDlg in both yeast two-hybrid and fusion protein binding assays, and it is required for interaction with hDlg in transfected HEK293 cells. In addition, the SH3 and GUK domains of each protein participate in intramolecular binding that in vitro predominates over intermolecular binding. The SH3 and GUK domains of human p55 display the same interactions in yeast two-hybrid assays as those of hCASK. Not all SH3-GUK interactions among these MAGUKs are permissible, however, implying specificity to SH3-GUK interactions in vivo. These results suggest MAGUK scaffold assembly may be regulated through effects on intramolecular SH3-GUK binding.  相似文献   

18.
Failure in establishment and maintenance of epithelial cell polarity contributes to tumorigenesis. Loss of expression and function of cell polarity proteins is directly related to epithelial cell polarity maintenance. The polarity protein discs large homolog 5 (DLG5) belongs to a family of molecular scaffolding proteins called Membrane Associated Guanylate Kinases (MAGUKs). As the other family members, DLG5 contains the multi-PDZ, SH3 and GUK domains. DLG5 has evolved in the same manner as DLG1 and ZO1, two well-studied MAGUKs proteins. Just like DLG1 and ZO1, DLG5 plays a role in cell migration, cell adhesion, precursor cell division, cell proliferation, epithelial cell polarity maintenance, and transmission of extracellular signals to the membrane and cytoskeleton. Since the roles of DLG5 in inflammatory bowel disease (IBD) and Crohn''s disease (CD) have been reviewed, here, our review focuses on the roles of DLG5 in epithelial cell polarity maintenance and cancer development.  相似文献   

19.
In this article we analyze the mechanisms by which the C-terminal four amino acids of inducible nitric oxide synthase (NOS2) interact with proteins that contain PDZ (PSD-95/DLG/ZO-1) domains resulting in the translocation of NOS2 to the cellular apical domain. It has been reported that human hepatic NOS2 associates to EBP50, a protein with two PDZ domains present in epithelial cells. We describe herein that NOS2 binds through its four carboxy-terminal residues to CAP70, a protein that contains four PDZ modules that is targeted to apical membranes. Interestingly, this interaction augments both the cytochrome c reductase and .NO-synthase activities of NOS2. Binding of CAP70 to NOS2 also results in an increase in the population of active NOS2 dimers. In addition, CAP70 participates in the correct subcellular targeting of NOS2 in a process that is also dependent on the acylation state of the N-terminal end of NOS2. Hence, nonpalmitoylated NOS2 is unable to progress toward the apical side of the cell despite its interaction with either EBP50 or CAP70. Likewise, if we abrogate the interaction of NOS2 with either EBP50 or CAP70 by fusing the GFP reporter to the carboxy-terminal end of NOS2 palmitoylation is not sufficient to confer an apical targeting.  相似文献   

20.
Sorting nexin 27 (SNX27) contains a PDZ domain that is phylogenetically related to the PDZ domains of the NHERF proteins. Studies on nonepithelial cells have shown that this protein is located in endosomes, where it regulates trafficking of cargo proteins in a PDZ domain–dependent manner. However, the role of SNX27 in trafficking of cargo proteins in epithelial cells has not been adequately explored. Here we show that SNX27 directly interacts with NHE3 (C-terminus) primarily through the SNX27 PDZ domain. A combination of knockdown and reconstitution experiments with wild type and a PDZ domain mutant (GYGF → GAGA) of SNX27 demonstrate that the PDZ domain of SNX27 is required to maintain basal NHE3 activity and surface expression of NHE3 in polarized epithelial cells. Biotinylation-based recycling and degradation studies in intestinal epithelial cells show that SNX27 is required for the exocytosis (not endocytosis) of NHE3 from early endosome to plasma membrane. SNX27 is also required to regulate the retention of NHE3 on the plasma membrane. The findings of the present study extend our understanding of PDZ-mediated recycling of cargo proteins from endosome to plasma membrane in epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号