首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The targeted delivery of non-polar ligands by binding proteins to membranes or membrane receptors involves the release of these ligands on or near the plasma membrane of target cells. Because these hydrophobic ligands are often bound inside a deep cavity of binding proteins, as shown previously for plasma retinol-binding protein (RBP), their release from these proteins might require the destabilization of the protein structure by partially denaturing conditions, such as those possibly present near plasma membranes. RBP is a plasma transport protein which delivers specifically retinol from its store sites to target cells. Here, we report the high-resolution (1.1-1.4A) crystal structures of bovine holo-RBP at five different pH values, ranging from 9 to 2. While unraveling details of the native protein structure and of the interactions with retinol at nearly atomic resolution at neutral pH, this study provides evidence for definite pH-induced modifications of several structural features of RBP. The structure most representative of the changes that holo-RBP undergoes at different pH values is that of its flexible state at pH 2. At this pH, most significant are the alteration of the arrangement of salt bridges and of the network of water molecules/H-bonds that participates in the retinol-RBP interaction, an appreciable increase of the volume of the beta-barrel cavity, a considerably higher degree of mobility of the RBP-bound ligand and of several protein regions and the disorder of a large number of solvent molecules that are ordered at neutral pH. These changes are likely to be accompanied by a modification of the pattern of charge distribution on the protein surface. All these changes, which reveal a substantially lowered conformational stability of RBP, presumably occur at the initial stages of the acidic denaturation of RBP and are possibly associated with a facilitated release of the retinol molecule from its carrier protein.  相似文献   

2.
The molten globule state is a partially folded conformer of proteins that has been the focus of intense study for more than two decades. This non-native fluctuating conformation has been linked to protein-folding intermediates, to biological function, and more recently to precursors in amyloid fibril formation. The molten globule state of human serum retinol-binding protein (RBP) has been postulated previously to be involved in the mechanism of ligand release (Ptitsyn, O. B., et al. (1993) FEBS Lett. 317, 181-184). Conserved residues within RBP have been identified and proposed to be key to folding and stability, although a link to a molten globule state has not previously been shown (Greene, L. H., et al. (2003) FEBS Lett. 553, 39-44). In this work, a detailed characterization of the acid-induced molten globule of RBP is presented. Using stopped-flow fluorescence spectroscopy in the presence of 8-anilino-1-naphthalene sulfonic acid (ANS), we show that RBP populates a state with molten-globule-like characteristics early in refolding. To gain insight into the structural features of the molten globule of RBP, we have monitored the denaturant-induced unfolding of this ensemble using NMR spectroscopy. The transition at the level of individual residues is significantly more cooperative than that found previously for the archetypal molten globule, alpha-lactalbumin (alpha-LA); this difference may be due to a predominantly beta-sheet structure present in RBP in contrast to the alpha-helical nature of the alpha-LA molten globule.  相似文献   

3.
Prajapati RS  Indu S  Varadarajan R 《Biochemistry》2007,46(36):10339-10352
Molten globule-like intermediates have been shown to occur during protein folding and are thought to be involved in protein translocation and membrane insertion. However, the determinants of molten globule stability and the extent of specific packing in molten globules is currently unclear. Using far- and near-UV CD and intrinsic and ANS fluorescence, we show that four periplasmic binding proteins (LBP, LIVBP, MBP, and RBP) form molten globules at acidic pH values ranging from 3.0 to 3.4. Only two of these (LBP and LIVBP) have similar sequences, but all four proteins adopt similar three-dimensional structures. We found that each of the four molten globules binds to its corresponding ligand without conversion to the native state. Ligand binding affinity measured by isothermal titration calorimetry for the molten globule state of LIVBP was found to be comparable to that of the corresponding native state, whereas for LBP, MBP, and RBP, the molten globules bound ligand with approximately 5-30-fold lower affinity than the corresponding native states. All four molten globule states exhibited cooperative thermal unfolding assayed by DSC. Estimated values of DeltaCp of unfolding show that these molten globule states contain 28-67% of buried surface area relative to the native states. The data suggest that molten globules of these periplasmic binding proteins retain a considerable degree of long range order. The ability of these sequentially unrelated proteins to form highly ordered molten globules may be related to their large size as well as an intrinsic property of periplasmic binding protein folds.  相似文献   

4.
We have studied the mechanism for mobilization of retinol from stellate cells. Our data show that perisinusoidal stellate cells isolated from liver contained retinol-binding protein (RBP) mRNA. By Western blot analysis we found that cultivated liver stellate cells secreted RBP into the medium. Cultivated stellate cells loaded in vitro with [3H]retinyl ester mobilized radioactive retinol as a complex with RBP. Furthermore, exogenous RBP added to the medium of cultured stellate cells increased the secretion of retinol to the medium. These data suggest that liver stellate cells in vivo mobilize retinol directly to the blood and that a transfer to parenchymal cells for secretion as holo-RBP is not required. The direct mobilization of retinol from liver stellate cells as retinol-RBP to blood is indirectly supported by the demonstration of RBP mRNA production and RBP secretion by lung stellate cells. The data suggest that the same mechanism for retinol mobilization may exist in hepatic and extrahepatic stellate cells. This is, vitamin A-storing stellate cells in liver, lungs, and probably also in other organs may synthesize their own RBP (or alternatively use exogenous RBP) and mobilize holo-RBP directly to the blood.  相似文献   

5.
Vitamin A has diverse biological functions and is essential for human survival. STRA6 is the high-affinity membrane receptor for plasma retinol binding protein (RBP), the principle and specific carrier of vitamin A (retinol) in the blood. It was previously shown that STRA6 couples to lecithin retinol acyltransferase (LRAT) and cellular retinol binding protein I (CRBP-I), but poorly to CRBP-II, for retinol uptake from holo-RBP. STRA6 catalyzes both retinol release from holo-RBP, which is responsible for its retinol uptake activity, and the loading of free retinol into apo-RBP, which can cause retinol efflux. Although STRA6-catalyzed retinol efflux into apo-RBP can theoretically deplete cells of retinoid, it is unclear to what extent this efflux happens and in what context. We show here that STRA6 can couple strongly to both CRBP-I and CRBP-II for retinol efflux to apo-RBP. Strikingly, pure apo-RBP can cause almost complete depletion of retinol taken up by CRBP-I in a STRA6-dependent manner. However, if STRA6 encounters both holo-RBP and apo-RBP (as in blood), holo-RBP blocks STRA6-mediated retinol efflux by competing with apo-RBP’s binding to STRA6 and by counteracting retinol efflux with influx. We also found that STRA6 catalyzes efficient retinol exchange between intracellular CRBP-I and extracellular RBP, even in the presence of holo-RBP. STRA6’s retinol exchange activity may serve to refresh the intracellular retinoid pool. This exchange is also a previously unknown function of CRBP-I and distinguishes CRBP-I from LRAT.  相似文献   

6.
Vitamin A is essential for vision and the growth/differentiation of almost all human organs. Plasma retinol binding protein (RBP) is the principle and specific carrier of vitamin A in the blood. Here we describe an optimized technique to produce and purify holo-RBP and two real-time monitoring techniques to study the transport of vitamin A by the high-affinity RBP receptor STRA6. The first technique makes it possible to produce a large quantity of high quality holo-RBP (100%-loaded with retinol) for vitamin A transport assays. High quality RBP is essential for functional assays because misfolded RBP releases vitamin A readily and bacterial contamination in RBP preparation can cause artifacts. Real-time monitoring techniques like electrophysiology have made critical contributions to the studies of membrane transport. The RBP receptor-mediated retinol transport has not been analyzed in real time until recently. The second technique described here is the real-time analysis of STRA6-catalyzed retinol release or loading. The third technique is real-time analysis of STRA6-catalyzed retinol transport from holo-RBP to cellular retinol binding protein I (CRBP-I). These techniques provide high sensitivity and resolution in revealing RBP receptor''s vitamin A uptake mechanism.  相似文献   

7.
Vitamin A is secreted from cellular stores and circulates in blood bound to retinol-binding protein (RBP). In turn, holo-RBP associates in plasma with transthyretin (TTR) to form a ternary RBP-retinol-TTR complex. It is believed that binding to TTR prevents the loss of RBP by filtration in the kidney. At target cells, holo-RBP is recognized by STRA6, a plasma membrane protein that serves a dual role: it mediates uptake of retinol from extracellular RBP into cells, and it functions as a cytokine receptor that, upon binding holo-RBP, triggers a JAK/STAT signaling cascade. We previously showed that STRA6-mediated signaling underlies the ability of RBP to induce insulin resistance. However, the role that TTR, the binding partner of holo-RBP in blood, plays in STRA6-mediated activities remained unknown. Here we show that TTR blocks the ability of holo-RBP to associate with STRA6 and thereby effectively suppresses both STRA6-mediated retinol uptake and STRA6-initiated cell signaling. Consequently, TTR protects mice from RBP-induced insulin resistance, reflected by reduced phosphorylation of insulin receptor and glucose tolerance tests. The data indicate that STRA6 functions only under circumstances where the plasma RBP level exceeds that of TTR and demonstrate that, in addition to preventing the loss of RBP, TTR plays a central role in regulating holo-RBP/STRA6 signaling.  相似文献   

8.
Retinol-binding protein (RBP) is the retinol-specific carrier protein present in plasma, where it circulates almost entirely bound to thyroxine-binding transthyretin (TTR). Recently, depressed plasma retinol and RBP levels in carriers of the I41N and G75D RBP point mutations have been reported. We show here that although recombinant human N41 and D75 RBPs can form complexes with retinol and TTR in vitro, the retinol-mutated RBP complexes are significantly less stable than human normal holo-RBP, as revealed by the markedly facilitated retinol release by mutated holo-RBPs to phospholipid membranes, in accordance with the location of mutated residues inside the RBP retinol-binding cavity. Taken together, the data are consistent with the I41N and G75D point mutations being the cause of an altered interaction of retinol with RBP, resulting in a remarkably reduced stability of the retinol-RBP complex, which in turn can lead to the lowering of plasma retinol and RBP levels.  相似文献   

9.
Retinoids are vitamin A (retinol) derivatives and complex regulators of adipogenesis by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Circulating retinol-binding protein 4 (RBP4) and its membrane receptor STRA6 coordinate cellular retinol uptake. It is unknown whether retinol levels and the activity of RAR and RXR in adipocyte precursors are linked via RBP4/STRA6. Here, we show that STRA6 is expressed in precursor cells and, dictated by the apo- and holo-RBP4 isoforms, mediates bidirectional retinol transport that controls RARα activity and subsequent adipocyte differentiation. Mobilization of retinoid stores in mice by inducing RBP4 secretion from the liver activated RARα signaling in the precursor cell containing the stromal-vascular fraction of adipose tissue. Retinol-loaded holo-RBP4 blocked adipocyte differentiation of cultured precursors by activating RARα. Remarkably, retinol-free apo-RBP4 triggered retinol efflux that reduced cellular retinoids, RARα activity, and target gene expression and enhanced adipogenesis synergistically with ectopic STRA6. Thus, STRA6 in adipocyte precursor cells links nuclear RARα activity to the circulating RBP4 isoforms, whose ratio in obese mice was shifted toward limiting the adipogenic potential of their precursors. This novel cross talk identifies a retinol-dependent metabolic function of RBP4 that may have important implications for the treatment of obesity.  相似文献   

10.
Retinoids are vitamin A derivatives with diverse biological functions. Both natural and artificial retinoids have been used as therapeutic reagents to treat human diseases, but not all retinoid actions are understood mechanistically. Plasma retinol binding protein (RBP) is the principal and specific carrier of vitamin A in the blood. STRA6 is the membrane receptor for RBP that mediates cellular vitamin A uptake. The effects of retinoids or related compounds on the receptor’s vitamin A uptake activity and its catalytic activities are not well understood. In this study, we dissected the membrane receptor-mediated vitamin A uptake mechanism using various retinoids. We show that a subset of retinoids strongly stimulates STRA6-mediated vitamin A release from holo-RBP. STRA6 also catalyzes the exchange of retinol in RBP with certain retinoids. The effect of retinoids on STRA6 is highly isomer-specific. This study provides unique insights into the RBP receptor’s mechanism and reveals that the vitamin A transport machinery can be a target of retinoid-based drugs.  相似文献   

11.
Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.  相似文献   

12.
pH-dependent transitions in secondary and tertiary structure are described for a plant aspartic protease from Vigna radiata. The enzyme was pH stable with pH optima of 3.0. The Lineweaver Burk analysis at various pH yielded pKa values of 3.3 and 4.29 indicating acidic amino acids at the active site of the enzyme. The structural changes exemplified compact secondary structure collapsed tertiary structure and exposure of hydrophobic patches at pH 10. The changes at pH 10 are typical of a molten globule state. This alkali induced molten globule is novel since acid induced molten globule state is more reported.  相似文献   

13.
A minigene encoding rat retinol-binding protein (RBP) was transfected into HeLa cells, which do not express endogenous RBP, transthyretin, or cellular retinol-binding protein. The HeLa cells manufactured and secreted the transfected gene product, demonstrating that RBP-transthyretin assembly is not a requirement for the secretion of RBP. When HeLa cells were grown under vitamin A-deficient conditions, RBP accumulated in the endoplasmic reticulum. Both serum and retinol stimulated secretion of RBP in a concentration-dependent manner. The retinol-regulated secretion occurred also after protein synthesis had been blocked by cycloheximide. Addition of holo-RBP or retinal, but not retinoic acid, stimulated secretion of RBP. Thus, an in vitro model system that resembles the rat hepatocyte in vivo with regard to the known regulation of RBP secretion has been established in a human cell line of extrahepatic origin. It can be concluded that cellular retinol-binding protein is not required for the transfer of retinol to RBP and that the mechanism whereby retinol controls the intracellular transport of RBP is neither specific for tissues synthesizing RBP nor species-specific. To investigate the structural properties responsible for the endoplasmic reticulum retention of RBP in the absence of its ligand, a cDNA encoding chicken purpurin, a protein that is 50% identical to RBP and that binds retinol, was expressed in HeLa cells. In contrast to RBP, purpurin was not retained in vitamin A-deficient HeLa cells.  相似文献   

14.
Paci E  Greene LH  Jones RM  Smith LJ 《The FEBS journal》2005,272(18):4826-4838
Retinol-binding protein transports retinol, and circulates in the plasma as a macromolecular complex with the protein transthyretin. Under acidic conditions retinol-binding protein undergoes a transition to the molten globule state, and releases the bound retinol ligand. A biased molecular dynamics simulation method has been used to generate models for the ensemble of conformers populated within this molten globule state. Simulation conformers, with a radius of gyration at least 1.1 A greater than that of the native state, contain on average 37%beta-sheet secondary structure. In these conformers the central regions of the two orthogonal beta-sheets that make up the beta-barrel in the native protein are highly persistent. However, there are sizable fluctuations for residues in the outer regions of the beta-sheets, and large variations in side chain packing even in the protein core. Significant conformational changes are seen in the simulation conformers for residues 85-104 (beta-strands E and F and the E-F loop). These changes give an opening of the retinol-binding site. Comparisons with experimental data suggest that the unfolding in this region may provide a mechanism by which the complex of retinol-binding protein and transthyretin dissociates, and retinol is released at the cell surface.  相似文献   

15.
The molten globule has been assumed to be a major intermediate state of protein folding. To extend our understanding of protein folding it is important to elucidate the thermodynamic mechanism of conformational stability of the molten globule. To clarify the role of electrostatic charge repulsion in the stability of the acidic molten globule state, we prepared a series of acetylated horse ferricytochrome c species with various degrees of charge repulsion. On the basis of circular dichroism measurement, we show that the stability of the acidic molten globule is determined by a balance of electrostatic repulsions between positive residues, which favor the extended conformation, and the opposing forces, which stabilize the molten globule. These results provide a clear example of charge repulsions producing unfolding of the compact protein structure, and suggest that the reversibly denatured conformation of ferricytochrome c under physiological conditions (i.e. neutral pH, ambient temperature and no denaturant) is the molten globule.  相似文献   

16.
Serum retinol (bound to plasma retinol-binding protein, RBP) can be determined by direct injection of as little as 20 microliter of serum or plasma by using size-exclusion high-pressure liquid chromatography (SE-HPLC) with fluorescence detection. Toyo Soda TSK G-3000SW columns (0.75 X 7.5-cm guard column plus 0.75 X 30-cm analytical column) were eluted with 0.2 M NaCl/0.01 M phosphate buffer (pH 6.8) at 1 ml/min, with detection at 280 nm for protein elution. Fluorescence of the retinol-RBP complex was monitored with excitation at 334 nm (interference filter) and emission at 425 nm (long-pass filter). The retinol-RBP complex eluted as two peaks, the holo-RBP-transthyretin complex (apparent molecular weight 70,000) and holo-RBP (apparent molecular weight 9000). Identities of these peaks were established by immunodiffusion assay of the proteins and by extraction and analysis of retinol. Nonideal interactions with the column packing seem to be responsible for the low apparent molecular weight of holo-RBP. The first peak predominated when large volumes of serum (100 to 250 microliters) were injected, and the second when small volumes (5 to 50 microliters) were analyzed. The integrated area of the two fluorescence peaks due to retinol bound to RBP was proportional to the volume of a serum sample injected over the range 5 to 250 microliters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have tested effects of retinol bound to its physiological carrier molecules, i.e. low density lipoprotein chylomicron remnants, and retinol binding protein (RBP) on differentiation and proliferation of myeloid leukemic cells in concentrations that can be obtained in vivo. Data presented in this study show that physiological concentrations of retinyl ester in chylomicron remnants induce differentiation and inhibit proliferation of the cell line HL-60 and promyelocytic leukemic cells in primary culture. Retinyl ester in low density lipoprotein showed no effect either on cell differentiation or proliferation of any of the myeloid cells tested. Retinol bound to RBP induced differentiation of HL-60 cells only in concentrations above those that can be found in vivo. However, cell proliferation was reduced both in HL-60 cells and in primary culture of leukemic cells using physiological concentrations of holo-RBP. These results suggest that retinyl ester in chylomicron remnants is the most effective vehicle for transport of retinol into leukemic cells in vivo.  相似文献   

18.
Horng JC  Demarest SJ  Raleigh DP 《Proteins》2003,52(2):193-202
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7.  相似文献   

19.
Drosophila melanogaster crammer is a novel cathepsin inhibitor that is involved in LTM (long-term memory) formation. The mechanism by which the inhibitory activity is regulated remains unclear. In the present paper we have shown that the oligomeric state of crammer is pH dependent. At neutral pH, crammer is predominantly dimeric in vitro as a result of disulfide bond formation, and is monomeric at acidic pH. Our inhibition assay shows that monomeric crammer, not disulfide-bonded dimer, is a strong competitive inhibitor of cathepsin L. Crammer is a monomeric molten globule in acidic solution, a condition that is similar to the environment in the lysosome where crammer is probably located. Upon binding to cathepsin L, however, crammer undergoes a molten globule-to-ordered structural transition. Using high-resolution NMR spectroscopy, we have shown that a cysteine-to-serine point mutation at position 72 (C72S) renders crammer monomeric at pH 6.0 and that the structure of the C72S variant highly resembles that of wild-type crammer in complex with cathepsin L at pH 4.0. We have determined the first solution structure of propeptide-like protease inhibitor in its active form and examined in detail using a variety of spectroscopic methods the folding properties of crammer in order to delineate its biomolecular recognition of cathepsin.  相似文献   

20.
To estimate the energy level of the molten globule state, the heat capacity function of apo-alpha-lactalbumin in the molten globule state has been examined using a scanning microcalorimeter at neutral pH. The results showed that the enthalpy difference between the molten globule state and presumed unfolded state by heating was almost zero at neutral pH, demonstrating that the molten globule state does not exhibit any co-operative transition upon heating. This is in agreement with the results already reported at acid pH, but is apparently in conflict with that recently reported with some assumptions at neutral pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号