首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
  总被引:1,自引:0,他引:1  
Aim In contrast to angiosperms, bryophytes do not appear to have radiated in Macaronesia and the western Mediterranean. We evaluate if: (1) the apparent lack of radiation in bryophytes reflects our failure to recognize cryptic endemic species; (2) bryophytes are characterized by extremely low evolutionary rates; or (3) bryophytes have a high dispersal ability, which prevents genetic isolation. Location Worldwide, with a special emphasis on Macaronesia and the western Mediterranean. Methods Three chloroplast regions were sequenced from samples of the moss Grimmia montana from its entire distribution range. Network analyses, Fst and Nst statistics were used to describe and interpret the phylogeographical signal in the data. Results Despite significant phylogeographical signal in the chloroplast genome, which demonstrates limits to gene flow at the continental scale, repeated sister group relationships observed among accessions from different geographical areas suggest recurrent colonization patterns. These observations are consistent with mounting evidence that intercontinental distributions exhibited by many bryophyte species result from long‐distance dispersal rather than continental drift. Madeiran and western Mediterranean island haplotypes are either shared by, or closely related to, European and North American ones. Fst values between Madeira, western Mediterranean islands, North America and Europe are not significantly different from zero, and suggest that Madeira and the south‐western Mediterranean are subject to strong transatlantic gene flow. By contrast, haplotypes found in the Canary Islands are shared or closely related to those of populations from south‐western Europe or southern Africa. Main conclusions Multiple origins and colonization events are not consistent with the hypothesis of a relictual origin of the Macaronesian moss flora. One possible reason for the failure of taxa that experienced multiple colonization events to radiate is niche pre‐emption. We suggest that strong gene flow, coupled with the occupancy of all suitable niches, either by earlier conspecific colonizers or by other species, could be the mechanism preventing island radiation in G. montana and other cryptogams with high long‐distance dispersal abilities.  相似文献   

3.
    
Aim Bryophytes exhibit apparently low rates of endemism in Macaronesia and differ from angiosperms in their diversity patterns by the widespread occurrence of endemics within and among archipelagos. This paper investigates the phylogeography of the leafy liverwort Radula lindenbergiana to determine: (1) whether or not morphologically cryptic diversification has occurred in Macaronesia, and (2) the relationships between Macaronesian and continental populations. Location Macaronesia, Europe, Africa. Methods Eighty‐four samples were collected across the species’ distribution range and sequenced at four chloroplast DNA (cpDNA) loci (atpB–rbcL, trnG, trnL and rps4). Phylogenetic reconstructions and Bayesian ancestral area reconstructions were used in combination with population genetics statistics (H, NST, FST) to describe the pattern of present genetic diversity in R. lindenbergiana and infer its biogeographic history. Results Patterns of genetic diversity in R. lindenbergiana exhibit a striking westwards gradient, wherein haplotype (0.90) and nucleotide (0.0038 ± 0.0019) diversity peak in Macaronesia, with a substantial endemic component. We found 20.9% of the genetic variance between biogeographic regions, and most pairwise FST comparisons between regions are significantly different from zero. The global NST (0.78) is significantly higher than the global FST (0.20), providing evidence for the presence of phylogeographic signal in the data. Ancestral area reconstructions suggest that the haplotypes currently found in western Europe share a Macaronesian common ancestor. Main conclusions The haplotype diversification exhibited by R. lindenbergiana in Macaronesia is comparable to that reported for many angiosperm groups at the species level. The apparent lack of radiation among Macaronesian bryophytes may thus reflect the reduced morphology of bryophytes in comparison with angiosperms. The high diversity found among Macaronesian haplotypes, especially in Madeira and the Canary Islands, and the significant NST/FST ratio between Macaronesia and all the other biogeographic regions (an indication that mutation rate exceeds dispersal rates) suggest that Macaronesian archipelagos could have served as a refugium during the Quaternary glaciations. Many haplotypes currently found in Europe share a Macaronesian common ancestor, and this further suggests that Macaronesia might have played a key role in the back‐colonization of the continent.  相似文献   

4.
    
The Ionian archipelago is the second largest Greek archipelago after the Aegean, but the factors driving plant species diversity in the Ionian islands are still barely known. We used stepwise multiple regressions to investigate the factors affecting plant species diversity in 17 Ionian islands. Generalized dissimilarity modelling was applied to examine variation in the magnitude and rate of species turnover along environmental gradients, as well as to assess the relative importance of geographical and climatic factors in explaining species turnover. The values of the residuals from the ISAR log10‐transfomed models of native and endemic taxa were used as a measure of island floristic diversity. Area was confirmed to be the most powerful single explanatory predictor of all diversity metrics. Mean annual precipitation and temperature, as well as shortest distance to the nearest island are also significant predictors of vascular plant diversity. The island of Kalamos constitutes an important plant diversity hotspot in the Ionian archipelago. The recent formation of the islands, the close proximity to the mainland source and the relatively low dispersal filtering of the Ionian archipelago has resulted in islands with a flora principally comprising common species and a low proportion of endemics. Small islands keep a key role in conservation of plant priority sites.  相似文献   

5.
Islands have long provided material and inspiration for the study of evolution and ecology. The West Indies are complex historically and geographically, providing a rich backdrop for the analysis of colonization, diversification and extinction of species. They are sufficiently isolated to sustain endemic forms and close enough to sources of colonists to develop a dynamic interaction with surrounding continental regions. The Greater Antilles comprise old fragments of continental crust, some very large; the Lesser Antilles are a more recent volcanic island arc, and the low-lying Bahama Islands are scattered on a shallow oceanic platform. Dating of island lineages using molecular methods indicates over-water dispersal of most inhabitants of the West Indies, although direct connections with what is now southern Mexico in the Early Tertiary, and subsequent land bridges or stepping stone islands linking to Central and South America might also have facilitated colonization. Species-area relationships within the West Indies suggest a strong role for endemic radiations and extinction in shaping patterns of diversity. Diversification is promoted by opportunities for allopatric divergence between islands, or within the large islands of the Greater Antilles, with a classic example provided by the Anolis lizards. The timing of colonization events using molecular clocks permits analysis of colonization-extinction dynamics by means of species accumulation curves. These indicate low rates of colonization and extinction for reptiles and amphibians in the Greater Antilles, with estimated average persistence times of lineages in the West Indies exceeding 30Myr. Even though individual island populations of birds might persist an average of 2Myr on larger islands in the Lesser Antilles, recolonization from within the archipelago appears to maintain avian lineages within the island chain indefinitely. Birds of the Lesser Antilles also provide evidence of a mass extinction event within the past million years, emphasizing the time-heterogeneity of historical processes. Geographical dynamics are matched by ecological changes in the distribution of species within islands over time resulting from adaptive radiation and shifts in habitat, often following repeatable patterns. Although extinction is relatively infrequent under natural conditions, changes in island environments as a result of human activities have exterminated many populations and others--especially old, endemic species--remain vulnerable. Conservation efforts are strengthened by recognition of aesthetic, cultural and scientific values of the unique flora and fauna of the West Indies.  相似文献   

6.
7.
    
Aim Using the heather Erica scoparia s.l. as a model, this paper aims to test theoretical predictions that island populations are genetically less diverse than continental ones and to determine the extent to which island and continental populations are connected by pollen‐ and seed‐mediated gene flow. Location Macaronesia, Mediterranean, Atlantic fringe of Europe. Methods Patterns of genetic diversity are described based on variation at two chloroplast DNA (cpDNA) loci and one nuclear DNA (nDNA) locus for 109 accessions across the entire distribution range of the species. Global patterns of genetic differentiation were investigated using principal coordinates analysis. Genetic differentiation between island and continental areas, estimations of pollen‐ and seed‐mediated gene flow, and the presence of phylogeographical signal were assessed by means of Fst /NST (continental scale) and Fij/Nij (local scale). Extant and past distribution ranges of the species were inferred from niche modelling using layers describing present and Last Glacial Maximum (LGM) macroclimatic conditions. Results The Azores exhibited a significantly higher genetic diversity than the continent. The lowest levels of genetic differentiation were observed between the Azores and the western Mediterranean, and the diversity observed in the Azores resulted from at least two colonization waves. Within the Azores, kinship coefficients showed a significant and much steeper decrease with geographical distance in the cpDNA than in the nDNA. The distribution predicted by LGM models was markedly different from the current potential distribution, particularly in western Europe, where no suitable areas were predicted by LGM models, and along the Atlantic coast of the African continent, where LGM models predicted highly suitable climatic conditions. Main conclusions The higher diversity observed in Azorean than in continental populations is inconsistent with MacArthur and Wilson’s equilibrium model and derived theoretical population genetic expectations. This inverted pattern may be the result of extinction on the continent coupled with multiple island colonization events and subsequent allopatric diversification and lineage hybridization in the Azores. The results highlight the role of allopatric diversification in explaining diversification on islands and suggest that this process has played a much more significant role in shaping Azorean biodiversity than previously thought.  相似文献   

8.
9.
Three of the Krakatau islands, in Sunda Strait, some 40 km from both Java and Sumatra, are believed to have been totally devastated by the famous cataclysmic eruption of 1883. The fourth, Anak Krakatau, is an emergent volcanic island which rose from Krakatau's submerged 1883 caldera in 1930, suffered a self-devastating eruption in 1952/3 and several severely damaging ones since then. In 1990 the tephritid fauna was monitored on all the islands with Steiner traps. Nine species were found, five of which appeared to have been found by Yukawa in 1982 (Yukawa 1984) using similar methods and lures, when he noted a total of six species. As in 1982, the fauna in 1990 was characterized by the numerical dominance ofBactrocera albistrigata (de Meijere) although this appeared to be less marked than in 1982 andBactrocera papayae Drew & Hancock appeared to have increased in relative numbers. The distribution of three species over the islands of the archipelago had increased and four species not found in 1982 were present. Rakata, Krakatau's remnant and by far the largest and highest island, carried seven species (six in 1982), Sertung three (two in 1982), Panjang four (one in 1982) and Anak Krakatau four (one in 1982). Capture rates were lower than in 1982 but still higher than those obtained on the Javan mainland in 1982. There was a marked difference between the tephritid faunas of Anak Krakatau's two forelands, which were at different stages of biotic succession.  相似文献   

10.
11.
12.
To distinguish between the influences of area and isolation on the butterfly faunas of British islands two approaches are adopted. First, species richness is related to island area, isolation and the size of the faunal source. Neither area nor isolation account for much variance in species richness, though area is more important than isolation. In contrast, species richness corresponds closely to the size of the faunal source on nearby islands and to that at proximate locations on adjacent mainlands. The second approach relates the incidence of species on islands to their ecological attributes. A very close relationship is found between species incidence on islands and those ecological variables that measure potential for migration and colonization and that resist extinction. The implications are that the majority of British islands in this survey are insufficiently isolated to prevent intermittent migrations of butterflies to them or so small as to generate frequent extinctions. Independent data indicate the capacity of many resident species to migrate distances in excess of the isolation of most of the islands. Some evidence also exists for the long-term survival of species on islands; important considerations in this respect are that most islands in the survey are large compared to habitat patches sustaining species on mainland Britain and that substantial portions of islands are retained in early seral stages or comprise long-lived stable habitats (e.g. peat mosses) that are particularly suitable for many British species.  相似文献   

13.
Diversification of freshwater fishes on islands is considered unlikely because the traits that enable successful colonization—specifically, broad salinity tolerances and the potential for oceanic dispersal—may also constrain post‐colonization genetic differentiation. Some secondary freshwater fish, however, exhibit pronounced genetic differentiation and geographic structure on islands, whereas others do not. It is unclear what conditions give rise to contrasting patterns of differentiation because few comparative reconstructions of population history have been carried out for insular freshwater fishes. In this study, we examined the phylogeography of Hart’s killifish (Rivulus hartii) across Trinidad, with reference to neighboring islands and northern South America, to test hypotheses of colonization and differentiation derived from comparable work on co‐occurring guppies (Poecilia reticulata). Geographic patterns of mitochondrial DNA haplotype variation and microsatellite genotype variation provide evidence of genetic differentiation of R. hartii among islands and across Trinidad. Our findings are largely consistent with patterns of geographically structured ancestry and admixture found in Trinidadian guppies, which suggests that both species share a history of colonization and differentiation and that post‐colonization diversification may be more common among members of insular freshwater fish assemblages than has been previously thought.  相似文献   

14.
    
Cocos Island is a small oceanic island midway between Costa Rica and the Galápagos Archipelago; about 2 Myr in age, it is the only tropical oceanic island in the eastern Pacific with tropical wet forest. We identified several hundred bark beetle specimens collected during recent expeditions by INBio, the National Biodiversity Institute of Costa Rica, and re-examined all specimens from earlier collections. We report 19 species in ten genera, seven or eight of which are endemic, making scolytines the largest group of beetles known from the island. We describe as new Pycnarthrum pseudoinsulare , Xyleborinus cocoensis , and Xyleborus sparsegranulosus , resurrect Xyleborus bispinatus as separate from X. ferrugineus , and report six other species as new to Cocos Island. Three-quarters of the scolytines reproduce by brother–sister mating, and we argue that inbreeders are superior island colonists because they are less affected than are outbreeders by problems of mate location and inbreeding depression. The fauna and flora of Cocos Island arrived by dispersal and human transport. We examine natural colonization patterns for the fauna, using the distributions of the relatives of island endemics: most colonization came from the Americas, but the closest relatives to some endemics are found on Caribbean or Galápagos islands. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 729–743.  相似文献   

15.
  总被引:3,自引:0,他引:3  
Part of the mitochondrial Cytochrome Oxidase I gene was sequenced for seven species of Gonepteryx (Pieridac) butterflies. Four of the species are island endemics inhabiting the Canary Island archipelago and Madeira. The remaining three are European and African conspecifics. Sequence data were analysed phylogenetically by maximum parsimony and maximum likelihood methods. The resulting trees were used to deduce Canarian species' ancestry, sequential inter-island colonization and systematics. They suggest African ancestry for the Canary Island taxa and a colonization pattern, within the archipelago, compatible with the geological ages of the islands and other Canarian fauna: a colonization sequence from Africa to Tenerife and Gomera, followed by Tenerife to La Palma. The molecular phylogeny indicated that there are three Canarian endemics, G. cleobule, G. palmae and G. eversi from Tenerife, La Palma and Gomera, respectively.  相似文献   

16.
Glor RE 《Molecular ecology》2011,20(23):4823-4826
If island biogeography has a sweet spot, it's where islands generate their own species diversity rather than merely taking on mainland immigrants. In birds and other highly dispersive taxa, however, this 'zone of radiation', may be vanishingly small. Darwin's finches and Hawaiian Honeycreepers are among only a handful of examples of island radiation in birds (Price 2008), suggesting that winged powers of dispersal make sufficient isolation from mainland colonists unlikely, while also hindering speciation within and among isolated islands. Nevertheless, two studies in this issue of Molecular Ecology join a string of other recent analyses suggesting that island radiation in birds remains under-appreciated (see also Moyle et al. 2009; Kisel & Barraclough 2010; Rosindell & Phillimore 2011). Melo et al. (2011) use a phylogenetic analysis of white-eyes on islands in the Gulf of Guinea to identify two previously overlooked island radiations, and reveal replicated adaptive divergence on islands where species occur in pairs. Sly et al. (2011), meanwhile, consider possible explanations for speciation and geographic differentiation within a large island, and find the same type of oceanic barriers that are critical to bird speciation across archipelagos may also contribute to divergence that appears to have occurred within a single island.  相似文献   

17.
    
  相似文献   

18.
    
Aim To reassess the relationships between Tarentola geckos from the Cape Verde Islands by including specimens from all islands in the range. To determine the variation within forms by sequencing over 400 specimens, thereby allowing the discovery of cryptic forms and resolving some of the issues raised previously. This extensive sampling was also used to shed light on distributions and to explain genetic diversity by comparing the ages and ecological and geological features of the islands (size, elevation and habitat diversity). Location The Cape Verde Islands: an oceanic archipelago belonging to the Macaronesian biogeographic region, located around 500 km off Senegal. Methods A total of 405 new specimens of Tarentola geckos were collected from nine islands with very different geological histories, topography, climate and habitats. Mitochondrial cytochrome b (cyt b) gene and 12S rRNA partial sequences were obtained and analysed using phylogenetic methods and networks to determine molecular diversity, demographic features and phylogeographic patterns. Results The phylogenetic relationships between all known forms of Cape Verdean Tarentola specimens were estimated for the first time, the relationships between new forms were assessed and previously hypothesized relationships were re‐examined. Despite the large sample size, low intraspecific diversity was found using a 303‐bp cyt b fragment. Star‐like haplotype networks and statistical tests suggest the past occurrence of a rapid demographic and geographical expansion over most of the islands. Genetic variability is positively correlated with size, elevation and habitat diversity of the islands, but is not linearly related to the age of the islands. Biogeographical patterns have, in general, high concordance with phylogenetic breaks and with the three eco‐geographical island groups. Volcanism and habitat diversity, both tightly linked with island ontogeny, as postulated by the general dynamic model of oceanic island biogeography, as well as present and historical size of the islands appear to be the main factors explaining the genetic diversity of this group. Main conclusions The Tarentola radiation was clarified and is clearly associated with the geological and ecological features of the islands. Two factors may account for the low intraspecific variation: (1) recent volcanic activity and high ecological stress, and (2) poor habitat diversity within some islands. More studies are needed to align taxonomy with phylogenetic relationships, whereas GIS modelling may help to predict precise species distributions.  相似文献   

19.
Many studies have addressed evolution and phylogeography of plant taxa in oceanic islands, but have primarily focused on endemics because of the assumption that in widespread taxa the absence of morphological differentiation between island and mainland populations is due to recent colonization. In this paper, we studied the phylogeography of Scrophularia arguta, a widespread annual species, in an attempt to determine the number and spatiotemporal origins of dispersal events to Canary Islands. Four different regions, ITS and ETS from nDNA and psbA‐trnH and psbJ‐petA from cpDNA, were used to date divergence events within S. arguta lineages and determine the phylogenetic relationships among populations. A haplotype network was obtained to elucidate the phylogenetic relationships among haplotypes. Our results support an ancient origin of S. arguta (Miocene) with expansion and genetic differentiation in the Pliocene coinciding with the aridification of northern Africa and the formation of the Mediterranean climate. Indeed, results indicate for Canary Islands three different events of colonization, including two ancient events that probably happened in the Pliocene and have originated the genetically most divergent populations into this species and, interestingly, a recent third event of colonization of Gran Canaria from mainland instead from the closest islands (Tenerife or Fuerteventura). In spite of the great genetic divergence among populations, it has not implied any morphological variation. Our work highlights the importance of nonendemic species to the genetic richness and conservation of island flora and the significance of the island populations of widespread taxa in the global biodiversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号