首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations.  相似文献   

2.
Here, the role of bitter gourd peroxidase has been investigated for the treatment of water contaminated with aromatic amines. Most of the aromatic amines were recalcitrant to the action of bitter gourd peroxidase. However, these aromatic amines were oxidized by bitter gourd peroxidase in the presence of a redox mediator, o-dianisidine HCl. The maximum oxidation of aniline was found to be in the buffer of pH 5.0 at 40 °C in the presence of 0.5 mM H2O2 and 0.15 mM o-dianisidine HCl. Aromatic amines oxidized and removed from wastewater were 65% aniline, 50% m-toluidine, 86% m-chloroaniline, 54% p-aminobenzoic acid, 61% diphenylamine and 95% N,N-dimethylaniline. Benzidine and p-nitroaniline were recalcitrant to the action of this enzyme even in the presence of o-dianisidine HCl. Complex mixtures of aromatic amines were treated by bitter gourd peroxidase. These mixtures were removed to varying extent, mixtures A, B and C were oxidized to 59%, 56% and 62%, respectively. Mixtures D, E and F were marginally oxidized to 30%, 14% and 16%, respectively.  相似文献   

3.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K m, k cat and k cat/K m values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 M, 2.13 s−1, 3.5 × 104 M−1s−1 and 71 M, 2.13 s−1, 3.0 × 104 M−1 s−1 respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25°C.  相似文献   

4.
Lignin peroxidase from the liquid culture filtrate of Gloeophyllum sepiarium MTCC-1170 has been purified to homogeneity. The molecular weight of the purified enzyme was 42 kDa as determined by SDS-PAGE. The K m values were 54 and 76 μM for veratryl alcohol and H2O2, respectively. The pH and temperature optima were 2.5 and 25°C, respectively. Depolymerization of coal by the fungal strain has been demonstrated using humic acid as a model of coal. Depolymerization of humic acid by the purified lignin peroxidase has been shown by the decrease in absorbance at 450 nm and increase in absorbance at 360 nm in presence of H2O2. Depolymerization of humic acid by the purified enzyme has also been demonstrated by the decrease in the viscosity with time of the reaction solution containing humic acid, H2O2, and the purified lignin peroxidase. The influence of NaCl and NaN3 and inhibitory effects of various metal chelating agents on the lignin peroxidase activity were studied.  相似文献   

5.
Biodegradation and bioconversion of extracted alkali lignin was performed under varying concentrations of carbon and nitrogen sources, by two potential Ascomycetes ligninolytic fungus isolated from soil. Fungus, F10 was identified as Aspergillus flavus, while APF4 as Emericella nidulans based upon closed similarity with their morphology and high homology in 18S rRNA gene sequences. The alkali lignin degradation was checked in term of disappearance of lignin content and colority. Selected fungus, degraded 19–41.6% of alkali lignin (0.25%, w/v) within 21 days of incubation and reduced the colority up to 14.4–21%. The activity of ligninolytic enzymes was periodically checked. During alkali lignin degradation manganese peroxidase (13.31?U/ml), lignin peroxidase (13.73?U/ml) and laccase (0.05?U/ml) activities were observed (at highest level). The alkali lignin degradation products and functional group changes in degraded lignin were analysed through gas chromatography-mass spectroscopy (GC-MS) and solid state 13C-NMR spectroscopy, respectively. The functional group modifications in alkali lignin moiety, alter its biochemical property, thus fungal mediated modified alkali lignin was further tested for reactive free radical scavenging potential with respect to hydroxyl, nitric oxide and superoxide radicals. Results demonstrate that the alkali lignin undergo degradation in studied nutritional conditions (high-carbon low nitrogen) and consequently increase its free radical scavenging activity up to 1–18%.  相似文献   

6.
Five bacterial strains were isolated and purified (CSA101 to CSA105) from the sediment core of the effluent released from the Century Pulp and Paper Mill Ltd., India. These strains were grown in minimal salt medium (MSM) containing pulp (10% as a carbon source). The production of lignin peroxidase, CMCase, Fpase, and xylanase together with protein and reducing sugar by all bacterial strains was observed. All of the bacterial isolates responded differently with respect to growth and ligninocellulolytic enzyme production. The maximum lignin peroxidase (LiP) was obtained from the cell extract of Bacillus sp. (CSA105) strain, which was used for purification, fractionation and characterization. The culture filtrate from Bacillus sp. (CSA105) was purified with ammonium sulfate precipitation. Crude protein was desalted by dialyzing with Tris buffer. The lignolytic enzyme produced in the liquid medium was fractionated by gel filtration on Sephadex G-100. In the present study, 12.4-fold purification of LiP enzyme was obtained and 35.85% yield of lignin peroxidase was achieved in the cell extract of Bacillus sp. (CSA105). Lignin peroxidase enzyme plays an important role in lignin degradation process. The ligninolytic enzymes were produced by all of the bacterial strains but maximum lignin peroxidase activity was found in cell extract of CSA105. On the basis of the results obtained, the bacterial strain (CSA105) was found most suitable for the purification of the LiP enzyme.  相似文献   

7.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

8.
The jelly fungus Auricularia auricula-judae produced an enzyme with manganese-independent peroxidase activity during growth on beech wood (∼300 U l−1). The same enzymatic activity was detected and produced at larger scale in agitated cultures comprising of liquid, plant-based media (e.g. tomato juice suspensions) at levels up to 8,000 U l−1. Two pure peroxidase forms (A. auricula-judae peroxidase (AjP I and AjP II) could be obtained from respective culture liquids by three chromatographic steps. Spectroscopic and electrophoretic analyses of the purified proteins revealed their heme and peroxidase nature. The N-terminal amino acid sequence of AjP matched well with sequences of fungal enzymes known as “dye-decolorizing peroxidases”. Homology was found to the N-termini of peroxidases from Marasmius scorodonius (up to 86%), Thanatephorus cucumeris (60%), and Termitomyces albuminosus (60%). Both enzyme forms catalyzed not only the conversion of typical peroxidase substrates such as 2,6-dimethoxyphenol and 2,2′-azino-bis(3-ethylthiazoline-6-sulfonate) but also the decolorization of the high-redox potential dyes Reactive Blue 5 and Reactive Black 5, whereas manganese(II) ions (Mn2+) were not oxidized. Most remarkable, however, is the finding that both AjPs oxidized nonphenolic lignin model compounds (veratryl alcohol; adlerol, a nonphenolic β-O-4 lignin model dimer) at low pH (maximum activity at pH 1.4), which indicates a certain ligninolytic activity of dye-decolorizing peroxidases.  相似文献   

9.
Summary Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH4)2SO4 precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K m and V max values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L −1 and 0.088 mmol (mg protein) −1 min −1 respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6 of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45 °C.  相似文献   

10.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

11.
The lignin peroxidase enzyme system of the white-rot fungus, Phanerochaete chrysosporium was assayed for its capacity to degrade two recalcitrant aliphatic ether compounds, high-molecular-mass polyethylene glycol (PEG 20 000) and methyl tert-butyl ether. Ligninolytic cultures of Phanerochaete chrysosporium were spiked with each ether compound and incubated in reaction vessels. Separate incubations were conducted in which the ether compounds were present as sole carbon source. Other parameters, such as varying the methyl tert-butyl ether concentration and veratryl alcohol additions were tested. No significant degradation of either compound was observed under any of the conditions tested. Implications of these results are discussed with respect to the oxidative limitations of the lignin peroxidase enzyme system and structural features of substrate molecules that may be requisite for oxidation by this system.  相似文献   

12.
Summary The lignin mineralization rate in cultures of Phanerochaete chrysosporium increases with lignin peroxidase concentration up to 20 nkat ml–1. At higher concentrations the rate of lignin mineralization decreases with increasing lignin peroxidase concentration. The amount of mycelium is not a limiting factor for lignin mineralization at high exocellular lignin peroxidase in association with the mycelium as pellets and no free exocellular enzyme induce a lignin mineralization rate equivalent to cultures reconstituted with washed pellets supplemented with 15 nkat ml–1 of exogenous free enzyme. These results show that although lignin degradation by lignin peroxidase seems to be facilitated when lignin peroxidase is localised on the surface of the mycelium, free exocellular lignin peroxidase can also efficiently enhance mineralization of lignin by P. chrysosporium.  相似文献   

13.
Lignin was mineralized in the experiments in which 14C-lignin was incubated with lignin peroxidase or manganese peroxidase in a tartrate buffer in the presence of cycloheximide-treated protoplasts obtained from the ligninolytic mycelia of Phanerochaete chrysosporium. The rate of lignin mineralization was dependent on the lignin peroxidase or manganese peroxidase concentration in the medium. In the experiments in which lignin was incubated with lignin peroxidase or manganese peroxidase, lignin was repolymerized irrespective of the presence of protoplasts mineralizing lignin, suggesting that an active degradation of lignin and repolymerization took place. Taking into account that lignin peroxidase and manganese peroxidase were the only extracellular enzymes in the experiments in which lignin was mineralized by the protoplasts, it is postulated that lignin peroxidase and/or manganese peroxidase can degrade lignin into small fragments which can then be further absorbed by the fungal cells and subsequently degraded to CO2.  相似文献   

14.
Enzyme production and degradation of the herbicide bentazon by Phanerochaete chrysosporium growing on straw (solid substrate fermentation, SSF) and the effect of nitrogen and the hydraulic retention time (HRT) were studied using a small bioreactor and batch cultures. The best degradation of bentazon was obtained in the low nitrogen treatments, indicating participation of the ligninolytic system of the fungus. The treatments that degraded bentazon also had manganese peroxidase (MnP) activity, which seemed to be necessary for degradation. Pure MnP (with Mn(II) and H2O2) did not oxidize bentazon. However, in the presence of MnP, Mn(II) and Tween 80, bentazon was slowly oxidized in a H2O2-independent reaction. Bentazon was a substrate of pure lignin peroxidase (LiP) and was oxidized significantly faster (22,000–29,000 times) as compared to the MnP-Tween 80 system. Although LiP was a better enzyme for bentazon oxidation in vitro, its role in the SSF systems remains unclear since it was detected only in treatments with high nitrogen and high HRT where no degradation of bentazon occurred. Inhibition of LiP activity may be due to phenols and extractives present in the straw.  相似文献   

15.
A Norway spruce (Picea abies) tissue culture line that produces extracellular lignin into the culture medium has been used as a model system to study the enzymes involved in lignin polymerization. We report here the purification of two highly basic culture medium peroxidases, PAPX4 and PAPX5, and isolation of the corresponding cDNAs. Both isoforms had high affinity to monolignols with apparent Km values in μM range. PAPX4 favoured coniferyl alcohol with a six-fold higher catalytic efficiency (Vmax/Km) and PAPX5 p-coumaryl alcohol with a two-fold higher catalytic efficiency as compared to the other monolignol. Thus coniferyl and p-coumaryl alcohol could be preferentially oxidized by different peroxidase isoforms in this suspension culture, which may reflect a control mechanism for the incorporation of different monolignols into the cell wall. Dehydrogenation polymers produced by the isoforms were structurally similar. All differed from the released suspension culture lignin and milled wood lignin, in accordance with previous observations on the major effects that e.g. cell wall context, rate of monolignol feeding and other proteins have on polymerisation. Amino acid residues shown to be involved in monolignol binding in the lignification-related Arabidopsis ATPA2 peroxidase were nearly identical in PAPX4 and PAPX5. This similarity extended to other peroxidases involved in lignification, suggesting that a preferential structural organization of the substrate access channel for monolignol oxidation might exist in both angiosperms and gymnosperms.  相似文献   

16.
Summary A solid state fermentation (SSF) process for the production of lignin peroxidase was optimized to enhance enzyme production by Phanerochaete chrysosporium. Optimization of the corncob SSF medium caused a significant reduction in fermentation time to give maximum lignin peroxidase yield. Supplementation of the SSF medium by low concentrations of peptone, yeast extract and Tween-80 enhanced lignin peroxidase production. Maximum yield of lignin peroxidase was 13.7 U/gds (units per gram dry substrate) noted after 5 days of SSF with 70% moisture and 20% (v/w) inoculum.  相似文献   

17.
The present work was carried out to determine the optimum culture conditions of Phanerochaete chrysosporium (ATCC 20696) for maximizing ligninolytic enzyme production. Additionally, separation of its lignin peroxidase was conducted. After experiments, an optimized culture medium/condition was constructed (per liter of Kirk’s medium): dextrose 10 g, ammonium tartrate 0.11 g, Tween-80 0.5 g, MnSO4 7 mg, and veratryl alcohol 0.3 g in 10 mM acetic acid buffer pH 4.5. Under the optimized experimental condition, both lignin peroxidase (LiP) and manganese peroxidase (MnP) were detected and reach the highest yield at 30°C on the 8th day culture. Salt precipitation methods was used in the extraction and purification processes. Results show that salt precipitation with 60% (NH4)2SO4 yielded the best result, especially toward LiP. Enzyme separation was conducted and two fractions with LiP activity. LiP1 and LiP2 were produced using three columns sequentially: desalting column, Q FF ion exchange column and Sepharyl S-300 HR gel filtration. LiP1 and LiP2 had been purified by 9.6- and 7.6-fold with a yield of 22.9% and 18.6%, respectively. According to the data of sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE), the molecular weights of the enzymes are 38 kDa and 40 kDa, respectively.  相似文献   

18.
Production of ligninolytic enzymes and degradation of 14C-ring labeled synthetic lignin by the white-rot fungus Cyathus stercoreus ATCC 36910 were determined under a variety of conditions. The highest mineralization rate for 14C dehydrogenative polymerizates (DHP; 38% 14CO2 after 30 days) occurred with 1 mM ammonium tartrate as nitrogen source and 1% glucose as additional carbon source, but levels of extracellular laccase and manganese peroxidase (MnP) were low. In contrast, 10 mM ammonium tartrate with 1% glucose gave low mineralization rates (10% 14CO2 after 30 days) but higher levels of laccase and manganese peroxidase. Lignin peroxidase was not produced by C. stercoreus under any of the studied conditions. Mn(II) at 11 ppm gave a higher rate of 14C DHP mineralization than 0.3 or 40 ppm, but the highest manganese peroxidase level was obtained with Mn(II) at 40 ppm. Cultivation in aerated static flasks gave rise to higher levels of both laccase and manganese peroxidase compared to the levels in shake cultures. 3,4-Dimethoxycinnamic acid at 500 μM concentration was the most effective inducer of laccase of those tested. The purified laccase was a monomeric glycoprotein having an apparent molecular mass of 70 kDa, as determined by calibrated gel filtration chromatography. The pH optimum and isoelectric point of the purified laccase were 4.8 and 3.5, respectively. The N-terminal amino acid sequence of C. stercoreus laccase showed close homology to the N-terminal sequences determined from other basidiomycete laccases. Information on C. stercoreus, whose habitat and physiological requirements for lignin degradation differ from many other white-rot fungi, expands the possibilities for industrial application of biological systems for lignin degradation and removal in biopulping and biobleaching processes. Received: 29 January 1999 / Received revision: 5 July 1999 / Accepted: 9 July 1999  相似文献   

19.
Increased manganese concentration during submerged cultivation of the ligninolytic white rot fungus Panus tigrinus 8/18 on N-limited mineral medium resulted in the induction of Mn-peroxidase and laccase. The Mn-peroxidase was purified with the purity factor RZ (A 406/A 280) = 4.3. The purified enzyme catalyzed H2O2-dependent oxidation of phenol oxidase substrates (aromatic amines, 2,2"-azinobis-(3-ethylbenzthiazolinesulfonic acid), hydroquinone, 2,6-dimethoxyphenol) without Mn2+, which is not typical for the usual Mn-peroxidases. Guaiacol and 2,4,6-trichlorophenol were not oxidized in the absence of Mn2+. Study of absorption spectra of the intermediates of the catalytic cycle revealed that this peroxidase is able to complete the redox cycle, reducing one-electron oxidized intermediate (Compound II) by Mn2+, as well as by an organic substrate (hydroquinone). This means that the enzyme is a hybrid Mn-peroxidase, different from the common Mn-peroxidases from ligninolytic fungi.  相似文献   

20.
Summary A sugar oxidizing enzyme which produces H2O2 during glucose starvation in the white-rot fungus Phanerochaete chrysosporium has been purified from mycelial extracts and somewhat characterized. Enzyme purity was confirmed by analytical isoelectric focusing and by dodecylsulfate/polyacrylamide gel electrophoresis, both techniques revealing a homogeneous protein. The enzyme is active over a broad pH range with maximum activity at pH 7.5. Of several sugars tested, glucose was the preferred substrate although -d-gluconolactone and d-xylose were also oxidized at significant rates (at 60% and 37%, respectively, of the rate observed with glucose). K m-values for glucose and xylose are 1.03 and 20 mM respectively and the glucose oxidation product was idenitified as d-arabino-2-hexosulose. The possible importance of glucose-2-oxidase in lignin degradation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号