首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microelectrode mapping techniques were used to determine the organization of somatosensory cortex in the Australian brush-tailed possum (Trichosurus vulpecula). The results of electrophysiological mapping were combined with data on the cyto- and myeloarchitecture, and patterns of corticocortical connections, using sections cut tangential to the pial surface. We found evidence for three topographically organized representations of the body surface that were coextensive with architectonic subdivisions. A large, discontinuous cutaneous representation in anterior parietal cortex was termed the primary somatosensory area (SI). Lateral to SI we found evidence for two further areas, the second somatosensory area (SII) and the parietal ventral area (PV). While neurones in all of these areas were responsive to cutaneous stimulation, those of SI were non-habituating, whereas those in SII and PV often habituated to the stimuli. Moreover, neuronal receptive fields in SII and PV were, in general, larger than those in SI. Neurones in cortex adjacent to the rostral and caudal boundaries of SI, including cortex that interdigitated between the discontinuous SI head and body representations, required stimulation of deep receptors in the periphery to elicit responses. Within the region of cortex containing neurones responsive to stimulation of deep receptors, body parts were represented in a mediolateral progression. Injections of anatomical tracers placed in electrophysiologically identified locations in SI revealed ipsilateral connections with other parts of SI, as well as cortex rostral to, caudal to, and interdigitating between, SI. Injections in SI also resulted in labelling in PV, SII, motor cortex, posterior parietal cortex and perirhinal cortex. The patterns of contralateral projections reflected those of ipsilateral projections, although they were relatively less dense. The present findings support recent observations in other marsupials in which multiple representations of the body surface were described, and suggest that multiple interconnected sensory representations may be a common feature of cortical organization and function in marsupials.  相似文献   

2.
Magnetoencephalography (MEG) is a totally non-invasive research method which provides information about cortical dynamics on a millisecond time-scale. Whole-scalp magnetic field patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network. At the SI cortex, the responses reflect mainly the activity of area 3b, with clearly somatotopical representations of different body parts. The SII cortex is activated bilaterally and it also receives, besides tactile input, nociceptive afference. Somatically evoked MEG signals may also be detected from the posterior parietal cortex, central mesial cortex and the frontal lobe. The serial versus parallel processing in the cortical somatosensory network is still under debate.  相似文献   

3.
Simultaneous recordings were obtained from the primary and secondary somatosensory cortical areas (SI and SII) in cats anesthetized with ketamine or pentobarbital. A total of 40 individual neurons were studied (29 in SII and 11 in SI) before, during, and following injections of microliter quantities of lidocaine hydrochloride in the other ipsilateral cortical area. Activity in the cortex injected with the local anesthetic was monitored with single-neuron, multi-neuron, or evoked potential responses to determine the time course of inactivation within 0.5-2 mm of the injection sites. Recording sites in both cortical locations were in the representations of the distal forelimb. Responses were elicited by transcutaneous electrical stimulation across the receptive fields with needle electrodes. Short-latency responses were synchronously activated, and, in those circumstances where single neurons were isolated in both areas, no overall differences in latency were noted. Anesthetization of either cortical area never blocked access of somatosensory information to the intact area, even when the injected cortex was completely silenced in the vicinity of the injection mass. In 15 SII neurons and 7 SI neurons, changes were seen in short-latency evoked responses to stimulation of their receptive fields or in background activity following local anesthesia of the other area through several cycles of injection and recovery. In 7 of these 15 SII cells, changes were noted in the timing and/or firing rates of the short-latency responses; changes were noted in the short-latency responses of 2 of these 7 SI cells while SII was silenced. In 11 SII and 6 SI cells, “background” activity that was recorded during the interstimulus intervals either increased (most cases) or decreased during local anesthesia of the other area. The results are discussed in reference to the hypothesis that primary sensory cortical areas feed information forward to secondary areas, and these feed back modulatory controls to the primary regions.  相似文献   

4.
As part of an effort to describe the connections of the somatosensory system in Galago garnetti, a small prosimian primate, injections of tracers into cortex revealed that two somatosensory areas, the second somatosensory area (S2) and the parietal ventral somatosensory area (PV), project densely to the ipsilateral superior colliculus, while the primary somatosensory area (S1 or area 3b) does not. The three cortical areas were defined in microelectrode mapping experiments and recordings were used to identify appropriate injection sites in the same cases. Injections of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were placed in S1 in different mediolateral locations representing body regions from toes to face in five galagos, and none of these injections labeled projections to the superior colliculus. In contrast, each of the two injections in the face representation of S2 in two galagos and three injections in face and forelimb representations of PV in three galagos produced dense patches of labeled terminations and axons in the intermediate gray (layer IV) over the full extent of the superior colliculus. The results suggest that the higher-order somatosensory areas, PV and S2, are directly involved in the visuomotor functions of the superior colliculus in prosimian primates, while S1 is not. The somatosensory inputs appear to be too widespread to contribute to a detailed somatotopic representation in the superior colliculus, but they may be a source of somatosensory modulation of retinotopically guided oculomotor instructions.  相似文献   

5.
The organization of neocortex in the short-tailed opossum (Monodelphis domestica) was explored with multiunit microelectrode recordings from middle layers of cortex. Microelectrode maps were subsequently related to the chemoarchitecture of flattened cortical preparations, sectioned parallel to the cortical surface and processed for either cytochrome oxidase (CO) or NADPH-diaphorase (NADPHd) histochemistry. The recordings revealed the presence of at least two systematic representations of the contralateral body surface located in a continuous strip of cortex running from the rhinal sulcus to the medial wall. The primary somatosensory area (S1) was located medially while secondary somatosensory cortex (S2) formed a laterally located mirror image of S1. Auditory cortex was located in lateral cortex at the caudal border of S2, and some electrode penetrations in this area responded to both auditory and somatosensory stimulation. Auditory cortex was outlined by a dark oval visible in flattened brain sections. A large primary visual cortex (V1) was located at the caudal pole of cortex, and also consistently corresponded to a large chemoarchitecturally visible oval. Cortex just rostral and lateral to V1 responded to visual stimulation, while bimodal auditory/visual responses were obtained in an area between V1 and somatosensory cortex. The results are compared with brain organization in other marsupials and with placentals and the evolution of cortical areas in mammals is discussed.  相似文献   

6.
Cortical areas responsive to somatosensory inputs were assessed by recording somatosensory evoked magnetic fields (SEF) to electrical stimulation of the left median nerve at wrist, using a 122-SQUID neuromagnetometer in various conditions of stimulus rate, attentional demand and detection task. Source modelling combined with magnetic resonance imaging (MRI) allowed localisation of six SEF sources on the outer aspect of the hemispheres located respectively: (1) in the posterior bank of the rolandic fissure (area SI), the upper bank of the sylvian fissure (parietal opercular area SII) and the banks of the intraparietal fissure contralateral to stimulation, (2) in the SII area ipsilateral to stimulation and (3) in the mid-frontal or inferior frontal gyri on both sides. All source areas were found to be simultaneously active at 70–140 ms after the stimulus, the SI source was the only one active already at 20–60 ms. The observed activation timing suggests that somatosensory input from SI is processed to higher-order areas through serial feedforward projections. However the long-lasting activations of all sources and their overlap in time is also compatible with a top-down control mediated via backward projections.  相似文献   

7.
As part of an effort to describe the connections of the somatosensory system in Galago garnetti, a small prosimian primate, injections of tracers into cortex revealed that two somatosensory areas, the second somatosensory area (S2) and the parietal ventral somatosensory area (PV), project densely to the ipsilateral superior colliculus, while the primary somatosensory area (S1 or area 3b) does not. The three cortical areas were defined in microelectrode mapping experiments and recordings were used to identify appropriate injection sites in the same cases. Injections of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were placed in S1 in different mediolateral locations representing body regions from toes to face in five galagos, and none of these injections labeled projections to the superior colliculus. In contrast, each of the two injections in the face representation of S2 in two galagos and three injections in face and forelimb representations of PV in three galagos produced dense patches of labeled terminations and axons in the intermediate gray (layer IV) over the full extent of the superior colliculus. The results suggest that the higher-order somatosensory areas, PV and S2, are directly involved in the visuomotor functions of the superior colliculus in prosimian primates, while S1 is not. The somatosensory inputs appear to be too widespread to contribute to a detailed somatotopic representation in the superior colliculus, but they may be a source of somatosensory modulation of retinotopically guided oculomotor instructions.  相似文献   

8.
Sensory cortex is characterized by multiple representations of a given modality which are generally highly interconnected and hierarchically arranged. The cat cerebral cortex contains at least five major areas dedicated to somatosensory processing, yet aside from areas SI and SII, little is known regarding the interconnectivity of the other, higher-level regions, such as SIV and SV. Therefore, this investigation examined the anatomical relationship of somatosensory areas SIV and SV to each other. In adult cats, wheatgerm agglutinin-horseradish peroxidase (WGA-HRP) injected into SIV produced retrogradely labeled neurons in SV in a bilaminar pattern. When biotinylated dextran amine (BDA) was injected into SV, orthogradely labeled axon terminals were found in SIV across all laminae but predominated in supragranular locations. In the reciprocal direction, neurons located in both the supra- and infragranular layers of SIV projected across all laminae of SV, but also in a manner that favored the supragranular layers. Because local inhibitory circuits are critical for specific somatosensory response properties, the distribution of GABA-ergic neurons and their co-localized markers calbindin (CB), calretinin (CR) and parvalbumin (PV) was also compared for SIV and SV using immunocytochemical techniques. Although fundamental differences in laminar arrangement were observed between the different GABA-ergic subtypes, the distribution for each subtype was essentially the same in both SIV and SV. Collectively, these connectional, cytoarchitectonic and organizational similarities indicate that SIV and SV are reciprocally connected and share many somatosensory processing and connectional features.  相似文献   

9.
The organization of neocortex in the short-tailed opossum ( Monodelphis domestica ) was explored with multiunit microelectrode recordings from middle layers of cortex. Microelectrode maps were subsequently related to the chemoarchitecture of flattened cortical preparations, sectioned parallel to the cortical surface and processed for either cytochrome oxidase (CO) or NADPH-diaphorase (NADPHd) histochemistry. The recordings revealed the presence of at least two systematic representations of the contralateral body surface located in a continuous strip of cortex running from the rhinal sulcus to the medial wall. The primary somatosensory area (S1) was located medially while secondary somatosensory cortex (S2) formed a laterally located mirror image of S1. Auditory cortex was located in lateral cortex at the caudal border of S2, and some electrode penetrations in this area responded to both auditory and somatosensory stimulation. Auditory cortex was outlined by a dark oval visible in flattened brain sections. A large primary visual cortex (V1) was located at the caudal pole of cortex, and also consistently corresponded to a large chemoarchitecturally visible oval. Cortex just rostral and lateral to V1 responded to visual stimulation, while bimodal auditory/visual responses were obtained in an area between V1 and somatosensory cortex. The results are compared with brain organization in other marsupials and with placentals and the evolution of cortical areas in mammals is discussed.  相似文献   

10.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

11.
12.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

13.
Neuronal responses in somatosensory cortical areas 3b and 1-2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1-2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al., Somatosens Mot Res 14: 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

14.
Abstract

Neural activity was recorded in the secondary somatosensory cortex (SII) of macaque monkeys during a simple feeding task. Around the border between the representations of the hand and face in SII, we found neurons that became active during both retrieving with the hand and eating; 59% had receptive fields (RFs) in the hand/face and the remaining 41% had no RFs. Neurons that responded to touching objects were rarely found. This suggests their sensorimotor function rather than tactile object recognition.  相似文献   

15.
We used a kinematic analysis for assessing locomotor impairments and evaluating the time course of recovery after focal injury to the forepaw area of the primary somatosensory cortex (SI) in rats. The animals were trained to traverse a beam that was rotated at various speeds. Changes in orientation of the body and independent movement of the anterior and posterior parts of the body were reconstructed using a 3D motion analysis. In addition, we used electrophysiological cortical mapping to search for neurophysiological changes within the spared cortical zones surrounding the lesion. Neuronal recordings were performed in the same animals prior to and 3 weeks after the lesion induction. Our findings show that a focal lesion that destroyed about 60% of the forepaw representational zone was sufficient to cause conspicuous impairments in the rats' ability to produce adequate motor adjustments to compensate for the lateral shift of the beam and to avoid falling. The main deficits were reflected in a lack of appropriate coordination between the anterior and posterior parts of the body and an inability to maintain a regular gait during locomotion. Skilled locomotion was fully recovered within a 2-3 week period. Functional recovery cannot be ascribed to a restitution of the lost sensory representations. A permanent decrease of forepaw representation was recorded despite the re-emergence of restricted representational sectors in the peri-lesion zone. We suggest that alterations may have occurred in other cortical and subcortical areas interconnected with the injured area. It is also conceivable that the functional recovery involved an increased reliance on all the available sources of sensorimotor regulation as well as the use of behavioral strategies.  相似文献   

16.
Detailed electrophysiological maps of the representations of trunk and adjacent body parts in area 3b and area 1 of somatosensory cortex were obtained in three macaque monkeys ( Macaca mulatta and Macaca radiata ) of either sex. A total of 211 microelectrode penetrations 250-300 &#119 m apart resulted in 1,190 recording sites. During penetrations deep into the posterior bank of the central sulcus, recordings were made every 300 &#119 m to depths of 6-7 mm until sites unresponsive to somatic stimuli were reached. Cortex was later cut parasagittally and sections were stained for cytochrome oxidase (CO) or Nissl substance. Contrary to expectations from earlier reports, the genitalia were represented lateral to the representations of the foot in cortex along the area 3b/1 border. The gluteal skin including the gluteal pads and the base of the tail were also represented in this section of cortex. Only a small region of cortex was devoted to the genitalia, and neurons in this cortex had receptive fields that were large and typically included skin of the inner thigh and belly. The lower, middle and upper trunk were represented more laterally, followed by the neck, upper head and arm. The receptive fields on the trunk were roughly the same size as those for the middle and lower trunk and slightly smaller on the upper trunk.  相似文献   

17.
Over 150 years ago, E.H. Weber declared that experience showed that tactile acuity was not affected by viewing the stimulated body part. However, more recent investigations suggest that cross-modal links do exist between the senses. Viewing the stimulated body site improves performance on tactile discrimination and detection tasks and enhances tactile acuity. Here, we show that vision modulates somatosensory cortex activity, as measured by somatosensory event-related potentials (ERPs). This modulation is greatest when tactile stimulation is task relevant. Visual modulation is not present in the P50 component reflecting the primary afferent input to the cortex but appears in the subsequent N80 component, which has also been localized to SI, the primary somatosensory cortex. Furthermore, we replicate previous findings that noninformative vision improves spatial acuity. These results are consistent with a hypothesis that vision modulates cortical processing of tactile stimuli via back projections from multimodal cortical areas. Several neurophysiological studies suggest that primary and secondary somatosensory cortex (SI and SII, respectively) activity can be modulated by spatial and tactile attention and by visual cues. To our knowledge, this is the first demonstration of direct modulation of somatosensory cortex activity by a noninformative view of the stimulated body site with concomitant enhancement of tactile acuity in normal subjects.  相似文献   

18.
Here we investigate the functional organization of structures involved in sensory analysis in a restricted region of a cortical projection area. We have shown that stimulation of somatosensory areas I and II (SI and SII) may block an afferent volley at the level of the thalamic relay nucleus, and that SII may be selectively blocked by stimulation of SI. Also definite somatosensory connections have been demonstrated between SII, SI, and the motor cortex. We suggest that common mechanisms underlie the generation of focal reactions in projection areas of the cortex induced by stimulation of various structures. The properties of two groups of neurones from area SII are described: those having a short latency and receiving direct projections from the thalamic relay nucleus, and those of long latent period with a well-marked convergence, and reacting to stimulation of various afferent pathways. It is suggested that each path to a local point of a cortical projection areas terminates with its relay element. The signal is then directed to a common intracortical system of neurones where signals from various sources occurs (afferent, interhemispherical, subcortico-cortical, and intracortical) converge and interact. All groups of neurones are involved in the formation of the common components of evoked potentials.Presented to the All-Union Symposium: "Electrical responses of the cerebral cortex to afferent stimuli," Kiev, October, 1969.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 155–165, March–April, 1970.  相似文献   

19.
Abstract This study analyzed neuronal responses in the second somatosensory (SII) and 7b cortical areas during a selective attention task. Cues directed attention to one of three simultaneous stimuli: vibrotactile stimuli applied to mirror sites on both hands or to a similarly timed auditory tone. Two stimulus patterns appeared with equal probability for the cued stimulus: a constant amplitude sinewave or the latter with a superimposed brief amplitude pulse midway in the trial. Uncued stimuli always contained amplitude pulses. Monkeys demonstrated whether an amplitude pulse at the cued location was present or absent by making appropriately rewarded up and down foot pedal movements. Cue location and stimulus pattern varied trial-wise and pseudo-randomly. Average firing rates to vibrotactile stimuli in 82 of 181 SII cells and 13 of 22 area 7b cells differed significantly during at least one epoch for trials cued to the contralateral hand when compared to trials cued to the ipsilateral hand or auditory stimulus. Predominant were relatively suppressed firing rates during times prior to the epoch containing the amplitude pulses or enhanced activity during and after these pulses. Generally, different cells showed suppression early vs enhancement later in a trial. Analyses of the ratio between firing rates before and during the amplitude pulses suggested improved evoked signals to the amplitude pulses. The discussion considers attention as a mechanism for reducing distractions, early in the trial through suppressing these signals, or for selectively increasing response magnitudes in the cued channel, especially around times when amplitude pulses were present or absent.  相似文献   

20.
The organization of somatosensory input and the input-output relationships in regions of the agranular frontal cortex (AGr) and granular parietal cortex (Gr) were examined in the chronic awake guinea pig, using the combined technique of single-unit recording and intracortical microstimulation (ICMS). AGr, which was cytoarchitectonically subdivided into medial (AGrm) and lateral (AGrl) parts, also can be characterized on a functional basis. AGrl contains the head, forelimb, and most hindlimb representations; only a small number of hindlimb neurons are confined in AGrm. Different distributions of submodalities exist in AGr and Gr: AGr receives predominantly deep input (with the exception of the vibrissa region, which receives cutaneous input), whereas neurons of Gr respond almost exclusively to cutaneous input. The cutaneous or deep receptive field (RF) of each neuron was determined by natural peripheral stimulation. All studied neurons were activated by small RFs, with the exception of lip, nose, pinna, and limb units of lateral Gr (Grl), for which the RFs were larger.

Microelectrode mapping experiments revealed the existence of three spatially separate, incomplete body maps in which somatosensory and motor representations overlap. One body map, with limbs medially and head rostrolaterally, is contained in AGr. A second map, comparable to the first somatosensory cortex (SI) of other mammals, is found in Gr, with hindlimb, trunk, forelimb, and head representations in an orderly mediolateral sequence. An unresponsive zone separates the head area from the forelimb region. A third map, with the forelimb rostrally and the hindlimb caudally, lies adjacent and lateral to the SI head area. This limb representation, which is characterized by an upright and small size compared to that found in SI, can be considered to be part of the second somatosensory cortex (SII). A distinct head representation was not recognized as properly belonging to SII, but the evidence that neurons of the SI head region respond to stimulation of large RFs located in lips, nose, and pinna leads us to hypothesize that the SII face area overlaps that of SI to some extent, or, alternatively, that the two areas are strictly contiguous and the limits are ambiguous, making them difficult to distinguish.

The input-output relationships were based on the results of RF mapping and ICMS in the same electrode penetration. The intrinsic specific interconnections of cortical neurons whose afferent input and motor output is related to identical body regions show a considerable degree of refinement. The input-output correspondence is especially pronounced for neurons with small RFs. This study confirms and extends similar data recently reported for other rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号