首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The orientation of mannosidase II, an integral Golgi membrane protein involved in asparagine-linked oligosaccharide processing, has been examined in rat liver Golgi membranes. Previous studies on mannosidase II purified from Golgi membranes revealed an intact subunit of 124,000 daltons, as well as a catalytically active 110,000-dalton degradation product generated during purification (Moremen, K. W., and Touster, O. (1985) J. Biol. Chem. 260, 6654-6662). In Triton X-100 extracts of Golgi membranes, the intact enzyme was cleaved by a variety of proteases to generate degradation products similar to those observed previously. At appropriate concentrations, chymotrypsin, pronase, and proteinase K generated 110,000-dalton species, while trypsin and Staphylococcus aureus V8 protease generated 115,000-dalton forms. Cleavage by chymotrypsin under mild conditions (10 micrograms/ml, 10 min, 20 degrees C) resulted in a complete conversion to a catalytically active 110,000-dalton form of the enzyme which was extremely resistant to further degradation. Attempts to demonstrate these protease digestions in nonpermeabilized Golgi membranes were unsuccessful, a result suggesting that the protease-sensitive regions are not accessible on the external surface of the membrane. In Golgi membranes permeabilized by treatment with 0.5% saponin, mannosidase II could readily be cleaved to the 110,000-dalton form by digestion with chymotrypsin under conditions similar to those which result in a proteolytic inactivation of galactosyltransferase, a lumenal Golgi membrane marker. Although mannosidase II catalytic activity was not diminished by this chymotrypsin digestion, as much as 90% of the enzyme activity was converted to a nonsedimentable form. To examine the effect of the proteolytic cleavage on the partition behavior of the enzyme, control and chymotrypsin-treated Triton X-114 extracts of Golgi membranes were examined by phase separation at 35 degrees C. The undigested enzyme partitioned into the detergent phase consistent with its location as an integral Golgi membrane protein, while the 110,000-dalton chymotrypsin-digested enzyme partitioned almost exclusively into the aqueous phase in a manner characteristic of a soluble protein. These results suggest that mannosidase II catalytic activity resides in a proteolytically resistant, hydrophilic 110,000-dalton domain. Attachment of this catalytic domain to the lumenal face of Golgi membranes is achieved by a proteolytically sensitive linkage to a 14,000-dalton hydrophobic membrane anchoring domain.  相似文献   

2.
Rat liver Golgi membranes contain two alpha 1,2-specific mannosidases (IA and IB) (Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W., and Touster, O. (1982) J. Biol. Chem. 257, 3660-3668). Mannosidase IA has now been purified to apparent homogeneity by detergent extraction and (NH4)2SO4 precipitation, followed by Sephacryl S-300, ion-exchange, and hydroxylapatite chromatography. The enzyme was homogeneous by nondenaturing polyacrylamide gel electrophoresis with different gel concentrations, and Ferguson plot analysis indicated an Mr of 230,000 for the native enzyme. Although electrophoresis under denaturing conditions generally gave a subunit Mr of 57,000, electrophoresis of less than 1 microgram of protein yielded a faint doublet of Mr 57,000 and 58,000. Thus, the enzyme appears to be a tetramer with four very similar subunits. The enzyme bound to concanavalin A-Sepharose 4B only when it was kept in contact with the lectin for 16 h. Endoglycosidase H treatment resulted in loss of its binding to the lectin, without leading to a detectable change in the size of the enzyme subunit. On electrophoretic gels, the enzyme gave a faint positive stain with periodic acid-Schiff's base. The enzyme contained about 0.9% hexose by direct analysis. It did not bind to affinity resins specific for neuraminic acid, galactose, or N-acetylglucosamine. All these studies suggest that the enzyme is a glycoprotein containing only one or two clusters of high mannose oligosaccharide. Mannosidase IA is active toward oligosaccharides containing alpha 1,2-linked mannosyl residues. [3H]Man9GlcNAc, [3H] Man8GlcNAc, [3H]Man7GlcNAc, and [3H]Man6GlcNAc are good substrates. Man9GlcNAc, the best substrate, yields Man8, Man7, and Man6 derivatives with structures suggesting that the sequence of release of mannose residues is rather specific. Immunoprecipitation studies using polyclonal antibody (IgG) prepared against homogeneous mannosidase IA cross-reacted with mannosidase IB, a result suggesting that these two enzymes share antigenic determinants. However, no cross-reactivity was observed with rat liver cytosolic and lysosomal alpha-D-mannosidases or with Golgi mannosidase II.  相似文献   

3.
Rat liver alpha-mannosidase II, a hydrolase involved in the processing of asparagine-linked oligosaccharides, is an integral membrane glycoprotein facing the lumen of Golgi membranes. We have previously shown (Moremen, K. W., and Touster, O. (1986) J. Biol. Chem. 261, 10945-10951) that mild chymotrypsin digestion of permeabilized or solubilized Golgi membranes will result in the cleavage of the intact 124,000-dalton alpha-mannosidase II subunit, releasing a 110,000-dalton hydrophilic polypeptide which contains the catalytic site. Consistent with the removal of a membrane binding domain, the chymotrypsin-generated 110,000-dalton peptide was found exclusively in the aqueous phase in Triton X-114 phase separation studies, whereas the intact enzyme was found in the detergent phase. Taking advantage of this conversion in phase partitioning behavior, a purification procedure was developed to isolate the 110,000-dalton proteolytic digestion product as a homogeneous polypeptide for further characterization and protein sequencing at a yield of greater than 65% from a rat liver Golgi-enriched membrane fraction. An improved purification procedure for the intact enzyme was also developed. The two forms of the enzyme were compared yielding the following results. (a) The catalytic activity of the intact and cleaved forms of alpha-mannosidase II were indistinguishable in Km, Vmax, inhibition by the alkaloid, swainsonine, and in their activity toward the natural substrate GlcNAc-Man5GlcNAc. (b) Both the intact and cleaved forms of the enzyme appear to be disulfide-linked dimers. (c) The two forms of the enzyme contain different NH2-terminal sequences suggesting that the cleaved NH2 terminus contains the membrane-spanning domain. (d) Additional peptide sequences were obtained from proteolytic fragments and cyanogen bromide digestion products in order to create a partial protein sequence map of the enzyme. These results are consistent with a model common among Golgi processing enzymes of a hydrophilic catalytic domain anchored to the lumenal face of Golgi membranes through an NH2-terminal hydrophobic membrane-anchoring domain.  相似文献   

4.
Glycosylation and secretion of surfactant-associated glycoprotein A   总被引:1,自引:0,他引:1  
Synthesis of glycoprotein A, the major surfactant-associated protein, was demonstrated in Type II epithelial cells isolated from rat lung. Predominant, secreted forms migrated as glycoproteins with asparagine-linked, complex-type oligosaccharides (32,000-36,000 daltons, pI 4.2-4.8). Primary in vitro translation products of the glycoprotein migrated as five distinct proteins of approximately 26,000 daltons which were processed by pancreatic microsomal membranes in vitro to 30,000-34,000-dalton, endoglycosidase F-sensitive forms. These in vitro processed forms of glycoprotein A co-migrated with intracellular forms immunoprecipitated from [35S]methionine-labeled, Type II cells. Pulse-chase experiments with [35S]methionine-labeled cells demonstrated rapid synthesis of endoglycosidase H-sensitive precursors of 34,000 daltons, pI 4.7-4.8, which were neither secreted from Type II cells nor detected in surfactant from alveolar lavage. These high-mannose forms were slowly processed to more acidic, endoglycosidase H-resistant, neuraminidase-sensitive forms. At between 10 and 180 min, fully sialylated or other endoglycosidase H-resistant forms were a minor fraction of intracellular glycoprotein A. After 16 h, intracellular glycoproteins A were primarily present as endoglycosidase H-resistant forms. Secretion of mature, sialylated, glycoprotein A was first detected 1 h after labeling, and was also readily detected after 16-24 h chase period. Tunicamycin, which blocks N-linked protein glycosylation, resulted in synthesis of three major 26,000-dalton proteins which co-migrated with the nonglycosylated, surfactant-associated proteins A1 present in surfactant from alveolar lavage and with the major in vitro translation products of rat lung poly(A+) mRNA. Tunicamycin inhibited secretion of glycoprotein A. Swainsonine, which inhibits Golgi alpha-mannosidase II, completely inhibited synthesis of the fully sialylated molecule. Swainsonine produced forms of glycoprotein A which were both neuraminidase- and endoglycosidase H-sensitive and were readily secreted. Monensin, an ionophore that alters protein transport, markedly inhibited intracellular sialylation and secretion. These studies demonstrate that pulmonary Type II cells rapidly synthesize and process surfactant-associated glycoprotein A precursors to endoglycosidase H-sensitive forms, which are slowly sialylated prior to secretion.  相似文献   

5.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

6.
Mannosidase II was purified from mung bean seedlings to apparent homogeneity by using a combination of techniques including DEAE-cellulose and hydroxyapatite chromatography, gel filtration, lectin affinity chromatography, and preparative gel electrophoresis. The release of radioactive mannose from GlcNAc[3H]Man5GlcNAc was linear with time and protein concentration with the purified protein, did not show any metal ion requirement, and had a pH optimum of 6.0. The purified enzyme showed a single band on SDS gels that migrated with the Mr 125K standard. The enzyme was very active on GlcNAcMan5GlcNAc but had no activity toward Man5GlcNAc, Man9GlcNAc, Glc3Man9GlcNAc, or other high-mannose oligosaccharides. It did show slight activity toward Man3GlcNAc. The first product of the reaction of enzyme with GlcNAcMan5GlcNAc, i.e., GlcNAcMan4GlcNAc, was isolated by gel filtration and subjected to digestion with endoglucosaminidase H to determine which mannose residue had been removed. This GlcNAcMan4GlcNAc was about 60% susceptible to Endo H indicating that the mannosidase II preferred to remove the alpha 1,6-linked mannose first, but 40% of the time removed the alpha 1,3-linked mannose first. The final product of the reaction, GlcNAcMan3GlcNAc, was characterized by gel filtration and various enzymatic digestions. Mannosidase II was very strongly inhibited by swainsonine and less strongly by 1,4-dideoxy-1,4-imino-D-mannitol. It was not inhibited by deoxymannojirimycin.  相似文献   

7.
CMP-sialic acid:lactosylceramide alpha 2,3-sialyltransferase (SAT-1) has been purified approximately 40,000-fold to apparent homogeneity from rat liver Golgi. The enzyme was solubilized from Golgi vesicles in 5% lauryldimethylamine oxide and "partially" purified by affinity chromatography twice on CMP-hexanolamine and once on lactosylceramide aldehyde-Sepharose 4B. Final purification was achieved by immunoaffinity chromatography on M12GC7-Gel 10. The M12GC7 monoclonal antibody specifically inhibits and immunoprecipitates SAT-1 activity. Identification of the protein, with an apparent molecular weight by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 60,000 daltons, was confirmed by Western blot and immunodetection with M12GC7. SAT-1 specifically catalyzes the transfer of N-acetylneuraminic acid (NeuAc, sialic acid) to lactosylceramide (Gal beta 1-4Glc beta 1-O-ceramide), forming GM3 ganglioside. Studies on substrate specificity indicate that the preferred acceptors have the general structure saccharide beta 1-O-ceramide, a disaccharide being preferred to a monosaccharide. SAT-1 is a glycoprotein. The carbohydrate moieties are detected with specific lectins. Deglycosylation of SAT-1 with N-glycanase results in an increase in a 43,000-dalton band. The two-dimensional electrophoretogram of SAT-1 indicates a pI range of 5.7-6.2 for the 60,000-dalton protein.  相似文献   

8.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

9.
Asparagine-linked oligosaccharides of glycoproteins are subject to a series of trimming reactions by glucosidases and mannosidases in the endoplasmic reticulum which result in the removal of all three glucose residues and several of the nine mannose residues. At present, endomannosidase represents the only processing enzyme which cleaves internally and provides an alternate deglucosylation pathway. However, in contrast to the endoplasmic reticulum residential proteins glucosidase I and II, endomannosidase is primarily situated in the Golgi apparatus of rat liver hepatocytes and hepatocyte cell lines. We have performed a confocal immunohistochemical study to investigate endomannosidase in various rat tissues and used a monoclonal antibody against Golgi mannosidase II as a marker for the Golgi apparatus. Although immunofluorescence for both endomannosidase and Golgi mannosidase II was detectable in the epithelia of many tissues, renal proximal tubular cells, cortex and medulla of adrenal gland, gastric mucosa, and Leydig cells of testis were unreactive for endomannosidase. Furthermore, the endothelia in all studied tissues were unreactive for endomannosidase but positive for Golgi mannosidase II. It is concluded that by immunohistochemistry endomannosidase exhibits a cell type-specific expression in rat tissues.  相似文献   

10.
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes "locoism", a phenocopy of the lysosomal storage disease, alpha-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.  相似文献   

11.
Golgi-associated processing of complex-type oligosaccharides linked to asparagine involves the sequential action of at least six enzymes. By equilibrium sucrose density gradient centrifugation of membranes from Chinese hamster ovary cells, we have partially resolved the set of four initial enzymes in the pathway (Mannosidase I, N-acetylglucosamine (GlcNAc) Transferase I, Mannosidase II, and GlcNAc Transferase II) from two later-acting activities (galactosyltransferase and sialyltransferase). In view of the recent demonstration that galactosyltransferase is restricted to the trans face of the Golgi complex in HeLa cells (Roth, J., and E.G. Berger, 1982, J. Cell Biol., 93:223-229), our results suggest that removal of mannose and attachment of peripheral N-acetylglucosamine may occur in some or all of the remaining cisternae on the cis side of the Golgi stack.  相似文献   

12.
Abstract

In experiments designed to evaluate the possible presence of N-glycan units in the nuclear T3 receptor, tunicamycin markedly depleted the nuclear T3 receptor sites when added to the culture medium of the T3 responsive ob 17 preadipocyte cell line under conditions which almost totally abolished protein N-glycosylation without significant alteration of protein synthesis. The affinity for T3 was unchanged. However, no significant interaction could be detected between the T3 receptor solubilized from the ob 17 cells, or from rat liver, and several insolubilized lectins of different specificities. Furthermore, treatment of the cells with swainsonine, a Golgi mannosidase II inhibitor, did not lead to any significant interaction of the receptor with concanavalin A as it would have occurred if the receptor had contained complex glycan units unrecognized by this lectin. These results are strong arguments against the presence of N-glycosidic moieties in the nuclear T3 receptor from mouse adipose cells and rat liver. The receptor sites depletion after tunicamycin treatment may most probably reflect an indirect effect through other glycoproteins which could be on the one hand required for either receptor stabilization or localization in the chromatin, or on the other hand involved in receptor level regulation.  相似文献   

13.
Swainsonine, a plant toxin, strongly inhibits certain alpha-D-mannosidases but has no effect on others [D. R. P. Tulsiani, T. M. Harris, and O. Touster (1982) J. Biol. Chem. 257, 7936-7939]. The reversible inhibition of jack bean and lysosomal alpha-D-mannosidases has previously been suggested to be similar in nature but quite complex. Specific differences in the action of swainsonine on these two enzymes and on Golgi mannosidase II are reported. (a) The inhibition of the jack bean mannosidase, but not rat liver lysosomal alpha-D-mannosidase or Golgi mannosidase II, is increased by preincubation with the alkaloid. (b) The inhibition of the jack bean and lysosomal enzymes, but not mannosidase II, is competitive at inhibitor concentrations of less than or equal to 0.5 microM. (c) The inhibition of jack bean alpha-mannosidase is largely irreversible, its very limited reversibility being partially dependent upon the swainsonine concentration used and on the time of preincubation with the inhibitor. On the other hand, the inhibition of lysosomal alpha-mannosidase is largely reversible, as shown by dilution experiments and by the use of [3H]swainsonine. Golgi mannosidase II shows intermediate reversibility, the results indicating two modes of binding; one rapid and irreversible, the other much slower and reversible.  相似文献   

14.
The compound alpha-D-mannopyranosylmethyl-p-nitrophenyltriazene (alpha-ManMNT) has been tested for its effect on four alpha-D-mannosidase activities present in rat liver. When p-nitrophenyl alpha-D-mannopyranoside was used as a substrate, preincubation of enzyme with 1.0 mM alpha-ManMNT inhibited soluble alpha-D-mannosidase by 90%, lysosomal alpha-D-mannosidase by approx. 60%, and had virtually no effect on Golgi mannosidase II. Golgi mannosidase I removal of the four alpha-1,2-linked D-mannoses from the common Man9GlcNAc2 oligosaccharide structure formed during N-linked glycoprotein biosynthesis was also blocked by treatment of the Golgi fraction with this compound. Mannosyltriazene inhibition of the three susceptible hepatic alpha-D-mannosidases was largely irreversible. alpha-ManMNT should therefore be useful for studying oligosaccharide processing and possibly for determining the turnover time of the inhibited alpha-D-mannosidases.  相似文献   

15.
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes “locoism”, a phenocopy of the lysosomal storage disease, α-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.  相似文献   

16.
Monoclonal antibodies are frequently used as organelle-specific markers without identifying the specific antigen recognized. We have purified the protein recognized by a Golgi-specific monoclonal antibody 53FC3 (Burke, B., Griffiths, G., Reggio, H., Louvard, D., and Warren, G. (1982) EMBO J. 1, 1621-1628). Peptide microsequencing suggested that this antigen is mannosidase II, which was confirmed by cross-immunoprecipitation with an anti-mannosidase II antibody and by precipitation of mannosidase activity with the monoclonal antibody. Mannosidase II was found to exist normally as a disulfide-linked dimer.  相似文献   

17.
Swainsonine, a toxic plant alkaloid reported to be the agent that induces in animals a neurological condition very similar to the hereditary lysosomal storage disease mannosidosis, and to inhibit the formation of complex glycoproteins of the asparagine-linked class, was recently shown [D.R.P. Tulsiani, T.M. Harris, and O. Touster, (1982) J. Biol. Chem. 257, 7936-7939] to be a highly potent and specific inhibitor of Golgi mannosidase II in addition to being a strong inhibitor of lysosomal mannosidase. In the present study the effect of administered swainsonine on tissue enzyme levels was investigated. The activity of Golgi mannosidase II was markedly decreased (22% of control) without changes occurring in the activities of several other Golgi enzymes. However, the effects of swainsonine on lysosomal enzymes was unexpected. In liver, acid mannosidase increased markedly, instead of decreasing as would be expected from a compound reported to induce a mannosidosis-like condition. Similarly, the principal change in brain was a substantial increase in lysosomal mannosidase levels. In plasma, most lysosomal enzymes increased. These results indicate that the pathological effects of swainsonine are not solely attributable to its being an inhibitor of lysosomal alpha-D-mannosidase and are probably a consequence of abnormal processing of glycoproteins.  相似文献   

18.
Isolation of a matrix that binds medial Golgi enzymes   总被引:15,自引:9,他引:6       下载免费PDF全文
Rat liver Golgi stacks were extracted with Triton X-100 at neutral pH. After centrifugation the low speed pellet contained two medial-Golgi enzymes, N-acetylglucosaminyltransferase I and mannosidase II, but no enzymes or markers from other parts of the Golgi apparatus. Both were present in the same structures which appeared, by electron microscopy, to be small remnants of cisternal membranes. The enzymes could be removed by treatment with low salt, leaving behind a salt pellet, which we term the matrix. Removal of salt caused specific re-binding of both enzymes to the matrix, with an apparent dissociation constant of 3 nM for mannosidase II. Re-binding was abolished by pretreatment of intact Golgi stacks with proteinase K, suggesting that the matrix was present between the cisternae.  相似文献   

19.
The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.  相似文献   

20.
Golgi alpha-mannosidase II (GlcNAc transferase I-dependent alpha 1,3[alpha 1,6] mannosidase, EC 3.2.1.114) catalyzes the final hydrolytic step in the N-glycan maturation pathway acting as the committed step in the conversion of high mannose to complex type structures. We have isolated overlapping clones from a murine cDNA library encoding the full length alpha-mannosidase II open reading frame and most of the 5' and 3' untranslated region. The coding sequence predicts a type II transmembrane protein with a short cytoplasmic tail (five amino acids), a single transmembrane domain (21 amino acids), and a large COOH-terminal catalytic domain (1,124 amino acids). This domain organization which is shared with the Golgi glycosyl-transferases suggests that the common structural motifs may have a functional role in Golgi enzyme function or localization. Three sets of polyadenylated clones were isolated extending 3' beyond the open reading frame by as much as 2,543 bp. Northern blots suggest that these polyadenylated clones totaling 6.1 kb in length correspond to minor message species smaller than the full length message. The largest and predominant message on Northern blots (7.5 kb) presumably extends another approximately 1.4-kb downstream beyond the longest of the isolated clones. Transient expression of the alpha-mannosidase II cDNA in COS cells resulted in 8-12-fold overexpression of enzyme activity, and the appearance of cross-reactive material in a perinuclear membrane array consistent with a Golgi localization. A region within the catalytic domain of the alpha-mannosidase II open reading frame bears a strong similarity to a corresponding sequence in the rat liver endoplasmic reticulum alpha-mannosidase and the vacuolar alpha-mannosidase of Saccharomyces cerevisiae. Partial human alpha-mannosidase II cDNA clones were also isolated and the gene was localized to human chromosome 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号