首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SPINDLY (SPY) protein of Arabidopsis is a negative regulator of gibberellin (GA) response. The SPY protein has 10 copies of the tetratricopeptide repeat (TPR) at the N terminus. TPR motifs function as protein-protein interaction domains. Several spy alleles are affected only in the TPR region suggesting that protein-protein interactions mediated by this domain are important for proper GA signaling. We have used a reverse genetics approach to further investigate the role of the TPR domain. The TPR domain of SPY was overexpressed in wild-type, gai, and spy plants. Expression of the TPR domain alone is not sufficient to rescue spy mutants. Expression of the TPR domain in a wild-type background produces phenotypes similar to those caused by loss-of-function spy mutants including resistance to GA biosynthesis inhibitors, short hypocotyl length, and early flowering. The dwarfing of the floral shoot internodes caused by the gai mutation was suppressed by expression of the TRP domain. Expression of the TPR domain had no effect on the abundance of endogenous SPY mRNA. The TPR domain was found to interact with SPY both in vitro and in yeast two-hybrid assays. These data indicate that the TPR domain of SPY can participate in protein-protein interactions and that these interactions are important for the proper functioning of SPY.  相似文献   

2.
Peng J  Richards DE  Moritz T  Ezura H  Carol P  Harberd NP 《Planta》2002,214(4):591-596
Bioactive gibberellin (GA) is an essential regulator of vascular plant development. The GAI gene of Arabidopsis thaliana (L.) Heynh. encodes a product (GAI) that is involved in GA signalling. The dominant mutant gai allele encodes an altered product (gai) that confers reduced GA responses, dwarfism, and elevated endogenous GA levels. Recessive, presumed loss-of-function alleles of GAI confer normal height and resistance to the GA biosynthesis inhibitor paclobutrazol. One explanation for these observations is that GAI is a growth repressor whose activity is opposed by GA, whilst gai retains a constitutive repressor activity that is less affected by GA. Previously, we described gai-t6, a mutant allele which contains an insertion of a maize Ds transposable element into gai. Here we describe the molecular and physiological characterization of two further alleles (gai-t5, gai-t7) identified during the Ds mutagenesis experiment. These alleles confer paclobutrazol resistance and normal endogenous GA levels. Thus the phenotype conferred by gai-t5, gai-t6 and gai-t7 is not due to elevated GA levels, but is due to loss of gai, a constitutively active plant growth repressor.  相似文献   

3.
Effects of light and temperature on gibberellin (GA)-induced seed germination were studied in Arabidopsis thaliana (L.) Heynh. with the use of GA-deficient ( gal ) mutants, mutants with a strongly reduced sensitivity to GA ( gai ) and with the recombinant gai/gal . Seeds of the gal mutant did not germinate in the absence of exogenous GAs, neither in darkness, nor in light, indicating that GAs are absolutely required for germination of this species. Wild-type and gai seeds did not always require applied GAs in light. The conclusion that light stimulates GA biosynthesis was strengthened by the antagonistic action of tetcyclacis, an inhibitor of GA biosynthesis. In wild-type, gal and gai/gal seeds light lowered the GA requirement, which can be interpreted as an increase in sensitivity to GAs. In gai and gai/gal seeds light became effective only after dormancy was broken by either a chilling treatment of one week or a dry after-ripening period at 2°C during some months. The present genetic and physiological evidence strongly suggests that temperature regulates the responsiveness to light in A. thaliana seeds. The responsiveness increases during dormancy breaking, whereas the opposite occurs during induction of dormancy (8 days at 15°C pre-incubation). Since light stimulates the synthesis of GAs as well as the responsiveness to GAs, temperature-induced changes in dormancy may indirectly change the capacities to synthesize GAs and to respond to GAs. GA sensitivity is also directly controlled by temperature. It is concluded that both GA biosynthesis and sensitivity to GAs are not the primary controlling factors in dormancy, but are essential for germination.  相似文献   

4.
Genetics of dominant gibberellin-insensitive dwarfism in maize   总被引:20,自引:2,他引:18       下载免费PDF全文
Harberd NP  Freeling M 《Genetics》1989,121(4):827-838
D8 and Mpl1 are two dominant dwarfing mutations of maize. Although they differ in severity of dwarfism, both D8 and Mpl1 mutants are unresponsive to gibberellin (GA). Because of their close phenotypic resemblance to the recessive GA-sensitive dwarf mutants these dominant mutations may identify a gene whose product is involved in the reception of GA. With this possibility in mind we have studied the genetic properties of D8 and Mpl1. Both mutations map close to Adh1 on chromosome 1L. By marking normal and translocated 1L arms with different Adh1 electrophoretic mobility alleles, we investigated the effect of gene dosage on dominant dwarf phenotype. The results suggest that D8 and Mpl1 encode novel product functions and that these functions are relatively insensitive to the presence of the (presumed) wild-type product. Using X-ray induced chromosome breakage we created sectors of wild-type cells within D8 or Mpl1 tissue; these sectors were marked by the linked recessive lw mutation. The phenotypes of these sectors demonstrated that, at least in certain plant organs and tissues, dominant dwarfism can be an autonomous phenotype. These results are consistent with the hypothesis that the wild-type gene product acts as a GA receptor. The potential utility of dominant dwarf phenotype in plant developmental analysis is discussed, and possible mechanisms for the action of the D8 and Mpl1 mutations are considered.  相似文献   

5.
Ethylene and gibberellins (GAs) control similar developmental processes in plants. The role of ethylene is at least in part to regulate the accumulation of DELLA proteins, key regulators of plant growth, which suppress the GA response. To expand our knowledge of ethylene-GA crosstalk and to reveal how the modulation of the ethylene and GA pathways affects global plant growth, the gibberellin-insensitive (gai), ethylene-overproducing 2-1 (eto2-1) double mutant, which has decreased GA signalling (resulting from gai) and increased ethylene biosynthesis (resulting from eto2-1), was characterized. Both single mutations resulted in reduced elongation growth. The double mutant showed synergistic responses in root and shoot growth, in induction of floral transition, and in inflorescence length, showing that crosstalk between the two pathways occurs in different plant organs throughout development. Furthermore, the altered ethylene-GA interactions affected root-shoot communication, as evidenced by an enhanced shoot:root ratio in the double mutant. When compared with both single mutants and the wild type, double mutants had enhanced content of active GA(4) at both the seedling and the rosette stages, and, unlike the gai mutant, they were sensitive to GA treatment. Finally, it was shown that synergistic responses in the double mutant were not caused by elevated ethylene biosynthesis but that, in the light, enhanced sensitivity to ethylene may, at least in part, be responsible for the observed phenotype.  相似文献   

6.
The semi-dominant gai mutation of arabidopsis confers a dark-green dwarf phenotype resembling that of gibberellin (GA)-deficient mutants. In contrast to GA-deficient mutants, gai mutants do not respond to GA treatments and accumulate higher levels of bioactive GAs than are found in wild-type controls. The gai mutation thus alters the responses of plant cells to GA, indicating that the GAI (wild-type) gene product is involved in GA reception and/or signal transduction. Here we describe the isolation and preliminary characterization of a mutation, gas1-1, which is not linked to gai and which partially suppresses the effect of the gai mutation. Double mutant, gai gas1-1, homozygotes are less severely dwarfed and lighter green than gai GAS1 controls. However, comparisons of the effects of treatments with exogenous GA demonstrate that gas1-1 does not increase the GA responsiveness of the gai mutant. Thus the gas1-1 mutation appears to reduce the GA-dependency of plant growth, and identifies a gene (GAS1) whose product is a candidate GA signal-transduction component.Abbreviations GA gibberellin - GA3 gibberellic acid We thank Maarten Koornneef (Wageningen Agricultural University, The Netherlands) for providing mutant seed stocks; Mark Aarts and Bernard Mulligan (University of Nottingham, UK) for performing the -irradiation. This work was made possible by AFRC/BBSRC PMB Grants PG208/520 and PG208/0600, and by a grant from the Gatsby Charitable Foundation. P.C. was supported by a Human Capital and Mobility Fellowship from the EC.  相似文献   

7.
? Gibberellin (GA) deficiency resulting from the na mutation in pea (Pisum sativum) causes a reduction in nodulation. Nodules that do form are aberrant, having poorly developed meristems and a lack of enlarged cells. Studies using additional GA-biosynthesis double mutants indicate that this results from severe GA deficiency of the roots rather than simply dwarf shoot stature. ? Double mutants isolated from crosses between na and three supernodulating pea mutants exhibit a supernodulation phenotype, but the nodule structures are aberrant. This suggests that severely reduced GA concentrations are not entirely inhibitory to nodule initiation, but that higher GA concentrations are required for proper nodule development. ? na mutants evolve more than double the amount of ethylene produced by wild-type plants, indicating that low GA concentrations can promote ethylene production. The excess ethylene may contribute to the reduced nodulation of na plants, as application of an ethylene biosynthesis inhibitor increased na nodule numbers. However, these nodules were still aberrant in structure. ? Constitutive GA signalling mutants also form significantly fewer nodules than wild-type plants. This suggests that there is an optimum degree of GA signalling required for nodule formation and that the GA signal, and not the concentration of bioactive GA per se, is important for nodulation.  相似文献   

8.
Gibberellins are required for embryo growth and seed development in pea   总被引:11,自引:0,他引:11  
The gibberellin (GA) biosynthesis mutants lh-1 and lh-2 have been used to examine the physiological role of GAs in pea seed development. The LH protein is required for the three-step oxidation of ent -kaurene to ent -kaurenoic acid early in the GA biosynthesis pathway. The allele-specific interaction of lh-1 and lh-2 with chemical inhibitors of these three steps suggests that LH encodes the multi-functional GA biosynthesis enzyme ent -kaurene oxidase. Unlike the lh-2 mutation which reduces seed weight and decreases seed survival by ∼50% compared with wild-type plants, the lh-1 allele has a transient effect on embryo and seed growth and only slightly increases seed abortion. These seed phenotypes parallel the effects of the two mutant alleles on GA levels in young seeds. Detailed examination of the growth of lh-1 seeds reveals homeostatic regulation of GA-promoted embryo and seed growth. Although GA-deficient seeds grow more slowly than WT seeds, decreased assimilate availability to the developing seeds is not the primary reason for the altered seed development. Instead, GAs act to promote some process(es) required for embryo and seed growth and only indirectly influence the distribution of assimilates. How GA deficiency causes seed abortion is not known but it may simply be a consequence of reduced seed or embryo growth rate. These results demonstrate that even relatively small changes in the levels of GAs in young seeds can alter seed development and suggest that the available GA-related mutants may represent only a subset of all possible mutants with reduced GA levels or GA signalling.  相似文献   

9.
The semidominant gibberellin-insensitive (gai) mutant of Arabidopsis thaliana shows impairment in multiple responses to the plant hormone gibberellin A3, which include effects on seed germination, stem elongation, apical dominance, and rapid flowering in short days. Results presented here show that the gai mutation also interferes with development of fertile flowers in continuous light. Mu-tagenesis of the gai mutant resulted in recovery of 17 independent mutants in which the gibberellin-insensitive phenotype is partially or completely suppressed. Sixteen of the suppressor mutations act semidominantly to restore gibberellin responsiveness. One representative of this class, the gar1 mutation, could not be genetically separated from the gai locus and is proposed to cause inactivation of the gai gene. The exceptional gar2 mutation partially suppresses the gai phenotype, is completely dominant, and is not linked to the gai locus. The gar2 mutation may define a new gene involved in gibberellin signaling. A recessive allele of the spindly (SPY) locus, spy-5, was also found to partially suppress the gai mutant phenotype.  相似文献   

10.
Three independent recessive mutations at the SPINDLY (SPY) locus of Arabidopsis confer resistance to the gibberellin (GA) biosynthesis inhibitor paclobutrazol. Relative to wild type, spy mutants exhibit longer hypocotyls, leaves that are a lighter green color, increased stem elongation, early flowering, parthenocarpy, and partial male sterility. All of these phenotypes are also observed when wild-type Arabidopsis plants are repeatedly treated with gibberellin A3 (GA3). The spy-1 allele is partially epistatic to the ga1-2 mutation, which causes GA deficiency. In addition, the spy-1 mutation can simultaneously suppress the effects of the ga1-2 mutation and paclobutrazol treatment, which inhibit different steps in the GA biosynthesis pathway. This observation suggests that spy-1 activates a basal level of GA signal transduction that is independent of GA. Furthermore, results from GA3 dose-response experiments suggest that GA3 and spy-1 interact in an additive manner. These results are consistent with models in which the SPY gene product regulates a portion of the GA signal transduction pathway.  相似文献   

11.
A novel elongated mutant has been isolated from EMS-mutagenized populations of the Arabidopsis thaliana ga4 mutant. After backcrossing with the Landsberg erecta ( Ler ) wild-type (WT) followed by selling, the mutant phenotype was identified in the GA4 background. Seedlings of the mutant, which has been named elg (elongated), are characterized by elongated hypocotyls and petioles, leaves that are narrow and somewhat epinastic and early flowering. Allelism tests with the hy1–hy5 mutants indicate that elg is not allelic with any of these long-hypocotyl mutants. From linkage analyses, the location of elg on chromosome 4, between cer2 and ap2 has been established. The pleiotropic phenotype of elg seedlings is suggestive of a disruption of phytochrome and/or gibberellin (GA) function. Although the elg mutant displays a light-dependent long-hypocotyl phenotype, elg seedlings retain a full range of photomorphogenic responses and the elg mutation acts additively with the photomorphogenic mutants phyB, hy1 and hy2 . This suggests that ELG acts independently of phytochrome action. The elg mutation partially suppresses the effect of GA-deficiency on elongation growth, and, although elg ga1 seedlings are more elongated than ga1 seedlings, both genotypes respond in the same way to applied GA. That applied GA and the elg mutation interact additively suggests that ELG acts independently of GA action.  相似文献   

12.
A shoot overgrowth mutant of rice ( Oryza sativa L.), accelerated internode overgrowth-1 ( ao-1), is marked by accelerated longitudinal elongation of aerial parts and overgrowth of internodes at the vegetative stage. The physiological properties of ao-1 were similar to those of wild plants treated with a saturating level of exogenous gibberellins (GAs), except for the internode-overgrowth phenotype, which was not mimicked by GA-treated wild plants. The ao-1 mutant was less sensitive to a GA biosynthesis inhibitor, Uniconazole-P, than the wild type. Dwarf alleles of three loci, including two GA-sensitive and one GA-insensitive mutation, were introduced to produce double-mutants with ao-1, but the overgrowth phenotype was not suppressed in double-homozygous mutants. These results suggest that the overgrowth phenotype of ao-1 is caused by abolition of GA signaling rather than by GA overproduction. It is likely that a part of the shoot regulation system of ao-1 is saturated with the GA signal. As a possible model consistent with the results, we propose that AO-1 protein acts as a negative regulator in GA signal transduction.  相似文献   

13.
14.
BIN2, a new brassinosteroid-insensitive locus in Arabidopsis   总被引:9,自引:0,他引:9  
Brassinosteroids (BRs) play important roles throughout plant development. Although many genes have been identified that are involved in BR biosynthesis, genetic approaches in Arabidopsis have led to the identification of only one gene, BRI1, that encodes a membrane receptor for BRs. To expand our knowledge of the molecular mechanism(s) of plant steroid signaling, we analyzed many dwarf and semidwarf mutants collected from our previous genetic screens and identified a semidwarf mutant that showed little response to exogenous BR treatments. Genetic analysis of the bin2 (BR-INSENSITIVE 2) mutant indicated that the BR-insensitive dwarf phenotype was due to a semidominant mutation in the BIN2 gene that mapped to the middle of chromosome IV between the markers CH42 and AG. A direct screening for similar semidwarf mutants resulted in the identification of a second allele of the BIN2 gene. Despite some novel phenotypes observed with the bin2/+ mutants, the homozygous bin2 mutants were almost identical to the well-characterized bri1 mutants that are defective in BR perception. In addition to the BR-insensitive dwarf phenotype, bin2 mutants exhibited BR insensitivity when assayed for root growth inhibition and feedback inhibition of CPD gene expression. Furthermore, bin2 mutants displayed an abscisic acid-hypersensitive phenotype that is shared by the bri1 and BR-deficient mutants. A gene dosage experiment using triploid plants suggested that the bin2 phenotypes were likely caused by either neomorphic or hypermorphic gain-of-function mutations in the BIN2 gene. Thus, the two bin2 mutations define a novel genetic locus whose gene product might play a role in BR signaling.  相似文献   

15.
Several plant hormones, including auxin, brassinosteroids and gibberellins, are required for skotomorphogenesis, which is the etiolated growth that seedlings undergo in the absence of light. To examine the growth of abscisic acid (ABA)-deficient mutants in the dark, we analysed several aba1 loss-of-function alleles, which are deficient in zeaxanthin epoxidase. The aba1 mutants displayed a partially de-etiolated phenotype, including reduced hypocotyl growth, cotyledon expansion and the development of true leaves, during late skotomorphogenic growth. In contrast, only small differences in hypocotyl growth were found between wild-type seedlings and ABA-deficient mutants impaired in subsequent steps of the pathway, namely nced3, aba2, aba3 and aao3. Interestingly, phenocopies of the partially de-etiolated phenotype of the aba1 mutants were obtained when wild-type seedlings were dark-grown on medium supplemented with fluridone, an inhibitor of phytoene desaturase, and hence, of carotenoid biosynthesis. ABA supplementation did not restore the normal skotomorphogenic growth of aba1 mutants or fluridone-treated wild-type plants, suggesting a direct inhibitory effect of fluridone on carotenoid biosynthesis. In addition, aba1 mutants showed impaired production of the beta-carotene-derived xanthophylls, neoxanthin, violaxanthin and antheraxanthin. Because fluridone treatment of wild-type plants phenocopied the phenotype of dark-grown aba1 mutants, impaired carotenoid biosynthesis in aba1 mutants is probably responsible for the observed skotomorphogenic phenotype. Thus, ABA1 is required for skotomorphogenic growth, and beta-carotene-derived xanthophylls are putative regulators of skotomorphogenesis.  相似文献   

16.
The SLENDER gene of pea encodes a gibberellin 2-oxidase   总被引:2,自引:0,他引:2  
  相似文献   

17.
Seed dormancy and germination are complex traits that are controlled by many genes. Four mutants in Arabidopsis thaliana exhibiting a reduced dormancy phenotype, designated rdo1, rdo2, rdo3 , and rdo4, have been characterized, both genetically and physiologically. Two of these mutants, rdo1 and rdo2 , have been described before, the other two represent novel loci. The mutants mapped on chromosome 1 ( rdo3 ), chromosome 2 ( rdo2 and rdo4 ), and chromosome 3 ( rdo1 ). None of these loci has been related to dormancy before. All four mutants show pleiotropic effects in the adult plant stage, which are different for each mutant. None of the mutants is deficient in ABA. Compared to L er (wild-type), ABA sensitivity is not altered either, thereby excluding the possibility that ABA is involved in causing the reduced dormancy phenotype. The GA requirement was studied by using the GA biosynthesis inhibitor paclobutrazol, and genetically by generating double mutants with the GA-deficient mutant ga1-3 . The results obtained by these two methods were comparable for all but one mutant: rdo1 . In a GA-deficient background, rdo1 , rdo2 and rdo3 , all show sensitivity to GA between that of ga1-3 and ga1-3 aba1. However, when using paclobutrazol rdo1 exhibited the same sensitivity as rdo4 and wild-type. Analysis of double mutants among the rdo mutants revealed a very complex and inconsistent pattern.  相似文献   

18.
The Arabidopsis acn (acetate non-utilizing) mutants were isolated by fluoroacetate-resistant germination and seedling establishment. We report the characterization of the acn2 mutant. Physiological analyses of acn2 showed that it possessed characteristics similar to those of the mutants cts (COMATOSE)-1 and pxa [peroxisomal ABC (ATP-binding-cassette) transporter]1. The acn2 locus was mapped to within 3 cM of the CTS gene on the bottom arm of chromosome IV using CAPS (cleavage amplification polymorphism) and SSLP (simple sequence-length polymorphism) markers. Crossing acn2 and cts-1 failed to restore the fluoroacetate-sensitive phenotype, suggesting that these mutations were allelic. Sequencing of the ACN2 locus revealed a C-->T nonsense mutation in exon 13, which would have resulted in the elimination of the C-terminal hemitransporter domain of the encoded protein. Neither the full-length CTS protein nor the truncated protein was detected on immunoblots using either C-terminal- or N-terminal-specific anti-CTS antibodies respectively, demonstrating the absence of the entire CTS protein in acn2 mutants. Emerged seedlings of both cts-1 and pxa1 alleles displayed increased resistance to FAc (monofluoroacetic acid) compared with the corresponding wild-type seedlings. Complementation studies showed that mutation of the CTS gene was responsible for the FAc-resistant phenotype, as when the wild-type protein was expressed in both the cts-1 and pxa1 mutant lines, the strains became FAc-sensitive. Feeding studies confirmed that both acn2 and cts-1 mutants were compromised in their ability to convert radiolabelled acetate into soluble carbohydrate. These results demonstrate a role for the ABC protein CTS in providing acetate to the glyoxylate cycle in developing seedlings.  相似文献   

19.
Singh DP  Jermakow AM  Swain SM 《The Plant cell》2002,14(12):3133-3147
Gibberellins (GAs) are tetracyclic diterpenoids that are essential endogenous regulators of plant growth and development. GA levels within the plant are regulated by a homeostatic mechanism that includes changes in the expression of a family of GA-inactivating enzymes known as GA 2-oxidases. Ectopic expression of a pea GA 2-oxidase2 cDNA caused seed abortion in Arabidopsis, extending and confirming previous observations obtained with GA-deficient mutants of pea, suggesting that GAs have an essential role in seed development. A new physiological role for GAs in pollen tube growth in vivo also has been identified. The growth of pollen tubes carrying the 35S:2ox2 transgene was reduced relative to that of nontransgenic pollen, and this phenotype could be reversed partially by GA application in vitro or by combining with spy-5, a mutation that increases GA response. Treatment of wild-type pollen tubes with an inhibitor of GA biosynthesis in vitro also suggested that GAs are required for normal pollen tube growth. These results extend the known physiological roles of GAs in Arabidopsis development and suggest that GAs are required for normal pollen tube growth, a physiological role for GAs that has not been established previously.  相似文献   

20.
A. L. Silverstone  PYA. Mak  E. C. Martinez    T. Sun 《Genetics》1997,146(3):1087-1099
We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号