首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoretic heterogeneity of glycosynthetase I from rabbit skeletal muscles is observed. Multiple glycosynthetase forms are separated in sucrose density gradient, their molecular weights are estimated. The existence of the enzyme as an equilibrium system of oligomeric forms, capable of reversible association-dissociation, is demonstrated. Dissociating effect of ATP, high pH values (11--12) and high ionic strength (2 M KCl) on oligomers of glycogen synthetase I is found to take place. Different activity of oligomers of different association degree is observed.  相似文献   

2.
Glycogen synthetase I from rabbit skeletal muscles was studied by electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. The presence of glycogen in the preparation prevented the destruction of the quaternary structure of the enzyme. In order to separate glycogen synthetase I from glycogen, alpha-amylase from saliva, pig pancrease and bacterial amyloglucosidase were used. The subunit composition of the total preparation and that of the individual glycogen synthetase forms separated ultracentrifugally in the sucrose density gradient, were shown to be identical. The molecular weight of the minimal subunit of glycogen synthetase I from rabbit skeletal muscles was shown to be 36,000. A comparison of the subunit composition of the enzyme preparations stored in the presence and in the absence of phenylmethylsulfanylfluoride did not show that the preparation possesses proteolytic activity.  相似文献   

3.
4.
5.
6.
The effects of glycogen on the non-activated and activated forms of phosphorylase kinase were studied. It was found that in the presence of glycogen the activity of non-activated kinase at pH 6.8 and 8.2 and that of the activated (in the course of phosphorylation) form are enhanced. The degree of activation depends on glycogen concentration. At saturating concentrations, this enzyme activity increases 2-3-fold; the enzyme affinity for the protein substrate, phosphorylase b, also shows an increase. The polysaccharide has no effect on the activity of phosphorylase kinase stimulated by limited proteolysis. In the presence of glycogen, the rate of autocatalytic phosphorylation of the enzyme is increased. Glycogen stabilizes the enzyme activity upon dilution. The experimental results suggest that the polysaccharide directly affects the phosphorylase kinase molecule. The maximal binding was shown to occur at the enzyme/polysaccharide ratio of 1:10 (w/w) in the presence of Ca2+ and Mg2+.  相似文献   

7.
8.
Inhibition of rabbit skeletal muscle glycogen synthase I was studied by using several synthetic substrate analogs: dansylhydrazone of oxo-UDP, 3-hydroxy-2-naphthoylhydrazone of oxo-UDP, salicyloylhydrazone of oxo-UDP, 1-oxyl-2,2,5,5-tetramethylpyrrolidine-3-carbonylhydrazone of oxo-UDP, N'-(dansyl)hydrazinocarbonylhydrazone of oxo-UDP and N'-(fluorenylidene-9)-hydrazinocarbonylhydrazone of oxo-UDP. All these compounds (with the exception of the nitroxyl-containing hydrazone) were characterized by a nonlinear dependence of the reverse reaction rate on the analog concentration in Dixon coordinates. The parabolic type of inhibition was due to the fact that the analogs tested except for the nitroxyl-containing hydrazone were able to interact both with the active center of the enzyme and with the FMN-binding site. The inhibition constants for oxo-UDP hydrazones were calculated for the both centers; their comparison revealed that the affinity of the analogs for the FMN-binding site increased with an increase in the radical hydrophobicity. These data suggest that the site with a high binding affinity for FMN is hydrophobic in nature. Apparently, isoalloxasine-like compounds display the highest affinity for this site.  相似文献   

9.
Glycogen synthetase from skeletal muscle is rapidly inactivated by DEPC. In the presence of the substrate UDPG only 50% of the enzyme activity is lost. The concomitant addition of both UDPG and the allosteric activator glucose-6-phosphate almost completely prevents the inactivation by DEPC. Since glucose-6-phosphate alone does not prevent the inactivation by DEPC, it is concluded that it is effective through a potentiation of the effects of UDPG, possibly through a conformational change of the enzyme.  相似文献   

10.
The primary structure of a tryptic peptide containing one of the phosphorylation sites on rabbit skeletal muscle glycogen synthase (site 1b) has been redetermined and shown to correspond to the C-terminus of the protein. The sequence is: -SNSVDTSSLSTPSEPLSSAPSLGEERN.  相似文献   

11.
12.
Glycogen synthase stimulated the autophosphorylation and autoactivation of phosphorylase kinase from rabbit skeletal muscle. This stimulation was additive to that by glycogen and the reaction was dependent on Ca2+. The effect by glycogen synthase was maximum within the activity ratio (the activity of enzyme without glucose-6-P divided by the activity with 10 mM glucose-6-P) of 0.3 and over 0.3 it was rather inhibitory. The results suggest that autophosphorylation of phosphorylase kinase in the presence of glycogen synthase on glycogen particles may be an important regulatory mechanism of glycogen metabolism in skeletal muscle.  相似文献   

13.
14.
A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4–2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level.  相似文献   

15.
Glycogen synthase kinase-3 (ATP:protein phosphotransferase, EC 2.7.1.37) phosphorylated K-casein 20-fold more rapidly than beta-casein, while alpha S1-casein was not a substrate. This distinguished it from casein kinase-I and casein kinase-II, which phosphorylate the beta-casein variant preferentially. Glycogen synthase kinase-3 phosphorylated a serine residue(s) in the C-terminal cyanogen bromide fragment on K-casein. In contrast, cyclic AMP-dependent protein kinase phosphorylated the N-terminal fragment, and phosphorylase kinase the N-terminal and intermediate cyanogen bromide fragments. The results emphasize the potential value of casein phosphorylation as a means of classifying protein kinases.  相似文献   

16.
17.
The relationship between dephosphorylation and D to I conversion of skeletal muscle glycogen synthase by synthase phosphatase was investigated using synthase preparations containing 1 to 3 mol of 32P/mol of subunit (90,000 g). Dephosphorylation was analyzed in terms of 32P release from the trypsin-sensitive and trypsin-insensitive phosphorylation regions of synthase. With synthase containing 1 to 2 mol of 32P/90,000 g, dephosphorylation of the trypsin-insensitive region correlated closely with D to I conversion and was more rapid than dephosphorylation of the trypsin-sensitive region. Synthase containing 3 mol of 32P/90,000 g was a relatively poor substrate for the phosphatase since dephosphorylation of both regions, as well as D to I conversion, was slow. With this species of synthase, glucose-6-P (0.1 mM) increased the rates of D to I conversion and dephosphorylation of trypsin-insensitive region. It is concluded that dephosphorylation of the trypsin-insensitive region is responsible for the conversion of synthase D to I.  相似文献   

18.
The effect of 1.5-gluconolactone on the activity of rabbit skeletal muscle glycogen synthase I was investigated. Using statistic methods (pair regressive analysis) and computer analysis on a Robotron EC 1834 personal computer, it was found that 1.5-gluconolactone is a true competitive inhibitor of the enzyme in respect of UDP-glucose. Similar to UDP, 1.5-gluconolactone increases the Km value for UDP-glucose without affecting the V value. The Ki value for 1.5-gluconolactone is equal to 123 + 8 microM and it coincides with the Km value for UDP-glucose.  相似文献   

19.
20.
Rabbit skeletal muscle glycogen synthetase was phosphorylated by incubation with [γ-32P]ATP, Mg++ and cyclic AMP-dependent protein kinase catalytic subunit from the same source. One of the major phosphorylation site peptides was isolated following brief tryptic-hydrolysis, and shown to have the sequence
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号