首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycomb group (PcG) proteins repress homeotic genes in cells where these genes must remain inactive during development. This repression requires cis-acting silencers, also called PcG response elements. Currently, these silencers are ill-defined sequences and it is not known how PcG proteins associate with DNA. Here, we show that the Drosophila PcG protein Pleiohomeotic binds to specific sites in a silencer of the homeotic gene Ultrabithorax. In an Ultrabithorax reporter gene, point mutations in these Pleiohomeotic binding sites abolish PcG repression in vivo. Hence, DNA-bound Pleiohomeotic protein may function in the recruitment of other non-DNA-binding PcG proteins to homeotic gene silencers.  相似文献   

2.
3.
A tethering assay was developed to study the effects of Polycomb group (PcG) proteins on gene expression in vivo. This system employed the Su(Hw) DNA-binding domain (ZnF) to direct PcG proteins to transposons that carried the white and yellow reporter genes. These reporters constituted naive sensors of PcG effects, as bona fide PcG response elements (PREs) were absent from the constructs. To assess the effects of different genomic environments, reporter transposons integrated at nearly 40 chromosomal sites were analyzed. Three PcG fusion proteins, ZnF-PC, ZnF-SCM, and ZnF-ESC, were studied, since biochemical analyses place these PcG proteins in distinct complexes. Tethered ZnF-PcG proteins repressed white and yellow expression at the majority of sites tested, with each fusion protein displaying a characteristic degree of silencing. Repression by ZnF-PC was stronger than ZnF-SCM, which was stronger than ZnF-ESC, as judged by the percentage of insertion lines affected and the magnitude of the conferred repression. ZnF-PcG repression was more effective at centric and telomeric reporter insertion sites, as compared to euchromatic sites. ZnF-PcG proteins tethered as far as 3.0 kb away from the target promoter produced silencing, indicating that these effects were long range. Repression by ZnF-SCM required a protein interaction domain, the SPM domain, which suggests that this domain is not primarily used to direct SCM to chromosomal loci. This targeting system is useful for studying protein domains and mechanisms involved in PcG repression in vivo.  相似文献   

4.
Cuddapah S  Roh TY  Cui K  Jose CC  Fuller MT  Zhao K  Chen X 《PloS one》2012,7(5):e36365
Polycomb group (PcG) proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs), which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.  相似文献   

5.
6.
7.
Suppressor-of-zeste-12 (Su(z)12) is a core component of the Polycomb repressive complex 2 (PRC2), which has a methyltransferase activity directed towards lysine residues of histone 3. Mutations in Polycomb group (PcG) genes cause de-repression of homeotic genes and subsequent homeotic transformations. Another target for Polycomb silencing is the engrailed gene, which encodes a key regulator of segmentation in the early Drosophila embryo. In close proximity to the en gene is a Polycomb Response Element, but whether en is regulated by Su(z)12 is not known. In this report, we show that en is not de-repressed in Su(z)12 or Enhancer-of-zeste mutant clones in the anterior compartment of wing discs. Instead, we find that en expression is down-regulated in the posterior portion of wing discs, indicating that the PRC2 complex acts as an activator of en. Our results indicate that this is due to secondary effects, probably caused by ectopic expression of Ubx and Abd-B.  相似文献   

8.
Polycomb group (PcG) and Trithorax (TRX) complexes assemble at Polycomb response elements (PREs) and maintain respectively the repressed and active state of homeotic genes. Although PcG and TRX complexes are distinct, their binding to some PRE fragments in vitro depends on GAGA motifs. GAGA factor immunoprecipitates with both complexes. In presence of a PRE, TRX stimulates expression and prevents the return of repression at later stages. When TRX levels are reduced, repression is re-established in inappropriate regions of imaginal discs, suggesting that TRX insufficiency impairs the epigenetic memory of the active state. Targeting a GAL-TRX fusion shows that TRX is a coactivator that stimulates expression of an active gene but cannot initiate expression by itself. Targeting a histone acetylase to a PRE does not affect embryonic silencing but causes a loss of memory in imaginal discs, suggesting that deacetylation is required to establish the memory of the repressed state.  相似文献   

9.
10.
Polycomb response elements (PREs) are regulatory sites that mediate the silencing of homeotic and other genes. The bxd PRE region from the Drosophila Ultrabithorax gene can be subdivided into subfragments of 100 to 200 bp that retain different degrees of PRE activity in vivo. In vitro, embryonic nuclear extracts form complexes containing Polycomb group (PcG) proteins with these fragments. PcG binding to some fragments is dependent on consensus sequences for the GAGA factor. Other fragments lack GAGA binding sites but can still bind PcG complexes in vitro. We show that the GAGA factor is a component of at least some types of PcG complexes and may participate in the assembly of PcG complexes at PREs.  相似文献   

11.
Mga is a DNA-binding protein that activates expression of several important virulence genes in the group A streptococcus (GAS), including those encoding M protein (emm), C5a peptidase (scpA) and Mga (mga). To determine the functionality of four potential helix-turn-helix DNA-binding motifs (HTH1-HTH4) identified within the amino-terminus of Mga, alanine substitutions were introduced within each domain in a MBP-Mga fusion allele and purified proteins were assayed for binding to Mga-specific promoter fragments (Pmga, PscpA and Pemm) in vitro. Although HTH-1 and HTH-2 mutations showed wild type DNA-binding activity, an altered HTH-3 domain resulted in reduced binding to the three promoters and an HTH-4 mutant was devoid of detectable binding activity. Plasmid-encoded expression of the HTH-3 and HTH-4 alleles from a constitutive promoter (Pspac) in the mga-deleted GAS strain JRS519 demonstrated that Mga-regulated emm expression correlated directly to the DNA-binding activity observed for each mutant protein in vitro. Single-copy expression of HTH-3 and HTH-4 from their native Pmga resulted in a dramatic reduction in autoregulated mga expression in both mutant strains. Thus, Mga appears to contain two DNA-binding domains (HTH-3 and HTH-4) that are required for direct activation of the Mga virulence regulon in vivo.  相似文献   

12.
The stable maintenance of expression patterns of homeotic genes depends on the function of a number of negative trans-regulators, termed the Polycomb (Pc) group of genes. We have examined the pattern of expression of the Drosophila segment polarity gene, engrailed (en), in embryos mutant for several different members of the Pc group. Here we report that embryos mutant for two or more Pc group genes show strong ectopic en expression, while only weak derepression of en occurs in embryos mutant for a single Pc group gene. This derepression is independent of two known activators of en expression: en itself and wingless. Additionally, in contrast to the strong ectopic expression of homeotic genes observed in extra sex combs- (esc-) mutant embryos, the en expression pattern is nearly normal in esc- embryos. This suggests that the esc gene product functions in a pathway independent of the other genes in the group. The data indicate that the same group of genes is required for stable restriction of en expression to a striped pattern and for the restriction of expression of homeotic genes along the anterior-posterior axis, and support a global role for the Pc group genes in stable repression of activity of developmental selector genes.  相似文献   

13.
Human CCAAT/enhancer-binding protein delta (CEBPD) has been reported as a tumor suppressor because it both induces growth arrest involved in differentiation and plays a crucial role as a regulator of pro-apoptotic gene expression. In this study, CEBPD gene expression is down-regulated, and "loss of function" alterations in CEBPD gene expression are observed in cervical cancer and hepatocellular carcinoma. Suppressor of zeste 12 (SUZ12), a component of the polycomb repressive complex 2 (PRC2), silences CEBPD promoter activity, enhancing the methylation of exogenous CEBPD promoter through the proximal CpG islands. Moreover, this molecular approach is consistent with the opposite mRNA expression pattern between SUZ12 and CEBPD in cervical cancer and hepatocellular carcinoma patients. We further demonstrated that Yin-Yang-1 (YY1) physically interacts with SUZ12 and can act as a mediator to recruit the polycomb group proteins and DNA methyltransferases to participate in the CEBPD gene silencing process. Taking these results into consideration, we not only demonstrate the advantage of SUZ12-silenced CEBPD expression in tumor formation but also clarify an in vivo evidence for YY1-mediated silencing paths of SUZ12 and DNA methyltransferases on the CEBPD promoter.  相似文献   

14.
15.
16.
17.
The Extra sex combs (ESC) protein is a Polycomb group (PcG) repressor that is a key noncatalytic subunit in the ESC-Enhancer of zeste [E(Z)] histone methyltransferase complex. Survival of esc homozygotes to adulthood based solely on maternal product and peak ESC expression during embryonic stages indicate that ESC is most critical during early development. In contrast, two other PcG repressors in the same complex, E(Z) and Suppressor of zeste-12 [SU(Z)12], are required throughout development for viability and Hox gene repression. Here we describe a novel fly PcG repressor, called ESC-Like (ESCL), whose biochemical, molecular, and genetic properties can explain the long-standing paradox of ESC dispensability during postembryonic times. Developmental Western blots show that ESCL, which is 60% identical to ESC, is expressed with peak abundance during postembryonic stages. Recombinant complexes containing ESCL in place of ESC can methylate histone H3 with activity levels, and lysine specificity for K27, similar to that of the ESC-containing complex. Coimmunoprecipitations show that ESCL associates with E(Z) in postembryonic cells and chromatin immunoprecipitations show that ESCL tracks closely with E(Z) on Ubx regulatory DNA in wing discs. Furthermore, reduced escl+ dosage enhances esc loss-of-function phenotypes and double RNA interference knockdown of ESC/ESCL in wing disc-derived cells causes Ubx derepression. These results suggest that ESCL and ESC have similar functions in E(Z) methyltransferase complexes but are differentially deployed as development proceeds.  相似文献   

18.
19.
20.
Regions of the mouse and human genomes with strong homology to the Drosophila engrailed gene have been identified by Southern blot analysis. One mouse engrailed-like region, Mo-en.1, has been cloned and partially sequenced; homology with the engrailed gene is localized to a 180 bp engrailed-like homeo box and 63 nucleotides immediately 3' to it. The protein sequence this region can encode includes 81 amino acids, of which 60 (75%) are identical with those of the putative translation product of the corresponding engrailed sequence. These data suggest that Mo-en.1 represents a mouse homolog of a gene of the Drosophila engrailed gene complex. Mo-en.1 has been mapped to chromosome 1, indicating it is not linked to other homeo box sequences that have been mapped in the mouse genome. Analysis of poly(A)+ RNA extracted from teratocarcinoma cells and whole mouse embryos demonstrates that the conserved homeo box region of Mo-en.1 is expressed differentially during mouse embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号