首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using immunological and chemical cleavage techniques, we have previously identified a domain contained within residues Phe56-Ser86 in the first tandem repeat (A1) of the heavy chain of factor XI which binds high Mr kininogen (Baglia, F. A., Jameson, B. A., and Walsh, P. N. (1990) J. Biol. Chem. 265, 4149-4154). We have now chemically synthesized peptides from corresponding homologous regions in the second (A2), third (A3), and fourth (A4) tandem repeats of the heavy chain (A2: Asn145-Ala176; A3: Asn235-Arg266; and A4: Gly326-Lys357). These peptides had no effect on the binding of factor XI to high Mr kininogen. Because of a lack of detailed structural information for the A1 domain, a molecular model of this region was constructed. This hypothetical model made distinct and testable predictions regarding potential surfaces and concomitant secondary structure. Specifically, the resulting structure depicted two juxtaposed beta-stranded stem-loops that, in conjunction with biological information, constitute a candidate surface for contact with high Mr kininogen. The hypothetical A1 model was, consequently, used as a predictive template in the rational design of two synthetic peptides (Val59-Arg70 and Asn72-Lys83). When both these peptides were added together and the binding of factor XI to high Mr kininogen was examined, a synergistic inhibitory effect was observed compared with each peptide added individually. Our data are consistent with the notion that the sequence of amino acids from Val59-Lys83 of the heavy chain of factor XI contains two antiparallel beta-strands connected by beta-turns that together comprise a continuous surface utilized for the binding of high Mr kininogen.  相似文献   

2.
We recently identified residues 185-224 of the light chain of human high molecular weight kininogen (HMWK) as the binding site for plasma prekallikrein (Tait, J.F., and Fujikawa, K. (1986) J. Biol. Chem. 261, 15396-15401). In the present study, we have further defined the primary structure requirements for binding of HMWK to factor XI and prekallikrein. In a competitive fluorescence polarization binding assay, a 31-residue synthetic peptide (residues 194-224 of the HMWK light chain) bound to prekallikrein with a Kd of 20 +/- 6 nM, indistinguishable from the previously determined value of 18 +/- 5 nM for the light chain. We also prepared three shorter synthetic peptides corresponding to different portions of the 31-residue peptide (residues 205-224, 212-224, and 194-211), but these peptides bound to prekallikrein more than 100-fold more weakly. Factor XI also bound to the same region of the HMWK light chain, but at least 58 residues (185-242) were required for optimal binding (Kd = 69 +/- 4 nM for the light chain; Kd = 130 +/- 50 nM for residues 185-242). The four synthetic peptides inhibited kaolin-activated clotting of blood plasma with potencies paralleling their affinities for prekallikrein and factor XI. Peptide 194-224 can also be used for rapid affinity purification of prekallikrein and factor XI from plasma.  相似文献   

3.
During the initiation of intrinsic coagulation factors XI and XIa interact intimately with several other coagulation proteins (factor XIIa, high Mr kininogen, and factor IX) as well as with the platelet surface. To help elucidate these complex intramolecular interactions, we have prepared a collection of monoclonal antibodies directed against various epitopes in factor XI. We have utilized these reagents to isolate factor XI and the light chain of factor XIa on affinity columns, and to probe structure-function relationships involved in the interactions of factor XIa with factor IX. The isolated light chain of factor XIa retained greater than 90% of its amidolytic activity against the oligopeptide substrate pyro-Glu-Pro-Arg-pNA (S-2366), but only 3.8% of its clotting activity in a factor XIa assay and 1% of its factor IX activating activity in an activation peptide release assay. This suggests that regions of the heavy chain are required for development of coagulant activity and specifically for the interaction of factor XIa with factor IX. To test this hypothesis, the effects of three of the monoclonal antibodies (5F4, 1F1, and 3C1) on the function of factor XIa were examined. The results show that in a clotting assay the light chain-specific antibody (5F4) inhibits 100% of the factor XIa activity, whereas of the heavy chain-specific antibodies, one (3C1) inhibits 75% and another (1F1) only 17%. Similarly in the factor IX activation peptide release assay, antibody 5F4 inhibits 100% of the factor XIa activity, whereas 3C1 inhibits 75% and 1F1 inhibits 33%. We conclude that regions located in the heavy chain, in addition to those in the light chain, are involved in the interaction of factor XIa with factor IX and in the expression of the coagulant activity of factor XI.  相似文献   

4.
We studied the characteristics of two monoclonal antibodies (mAbs), F1 and F3, against human coagulation factor XII (Hageman factor). Experiments with trypsin-digested 125I-factor XII revealed that the epitope for mAb F1 is located in the NH2-terminal Mr 40,100 portion of factor XII, whereas that for mAb F3 resides in the COOH-terminal Mr 30,000 portion of this protein. Factor XII in fresh plasma (single-chain factor XII) bound approximately 190 times less to mAb F1 than factor XII in dextran sulfate-activated plasma (cleaved factor XII). However, no difference in accessibility of the epitope for mAb F1 was observed between cleaved and single-chain factor XII when bound to glass. mAb F3 appeared to bind to both single-chain and cleaved factor XII in plasma as well as when bound to glass. Neither mAb F1, nor F3 affected the amidolytic activity of factor XIIa, whereas both mAb F1 and F3 inhibited factor XII-coagulant activity to about 15 and 70%, respectively, at a molar ratio of mAb to factor XII of 20 to 1. mAb F1, as well as F(ab')2 and F(ab') fragments of this antibody induced activation of the contact system in plasma, as reflected by the generation of factor XIIa. C1 inhibitor and kallikrein. C1 inhibitor complexes. Activation was induced neither upon incubation with mAb F3, nor with that of control mAbs. mAb F1-induced contact activation required the presence of factor XII, prekallikrein, and high molecular weight kininogen and, in contrast to activation by negatively charged surfaces, was not inhibited by the presence of Polybrene. Based on these results we propose that a conformational change in factor XII is a key event in the activation process of this molecule. This conformational change can be induced by binding of factor XII to a surface as well as by proteolytic cleavage. As mAb F1 can also induce this conformational change, this antibody may provide a unique tool in studies of the activation of factor XII.  相似文献   

5.
We have reported that prothrombin (1 microm) is able to replace high molecular weight kininogen (45 nm) as a cofactor for the specific binding of factor XI to the platelet (Baglia, F. A., and Walsh, P. N. (1998) Biochemistry 37, 2271-2281). We have also determined that prothrombin fragment 2 binds to the Apple 1 domain of factor XI at or near the site where high molecular weight kininogen binds. A region of 31 amino acids derived from high molecular weight kininogen (HK31-mer) can also bind to factor XI (Tait, J. F., and Fujikawa, K. (1987) J. Biol. Chem. 262, 11651-11656). We therefore investigated the role of prothrombin fragment 2 and HK31-mer as cofactors in the binding of factor XI to activated platelets. Our experiments demonstrated that prothrombin fragment 2 (1 microm) or the HK31-mer (8 microm) are able to replace high molecular weight kininogen (45 nm) or prothrombin (1 microm) as cofactors for the binding of factor XI to the platelet. To localize the platelet binding site on factor XI, we used mutant full-length recombinant factor XI molecules in which the platelet binding site in the Apple 3 domain was altered by alanine scanning mutagenesis. The recombinant factor XI with alanine substitutions at positions Ser(248), Arg(250), Lys(255), Leu(257), Phe(260), or Gln(263) were defective in their ability to bind to activated platelets. Thus, the interaction of factor XI with platelets is mediated by the amino acid residues Ser(248), Arg(250), Lys(255), Leu(257), Phe(260), and Gln(263) within the Apple 3 domain.  相似文献   

6.
Unique sequence-binding sites are exposed on the surface of high molecular weight kininogen which complex prekallikrein or factor XI with high affinity and specificity. A sequence comprising 31 residues of the mature kininogen molecule (Asp565-Lys595) retains full binding activity for prekallikrein (K D =20 nM) and assumes a complex folded structure in solution which is stabilized by long-range interactions between N- and C-terminal residues. The sequence Trp569-Lys595 (27 residues) shows only 28% of this binding affinity and lacks the key structural features required for protein recognition (Scarsale, J. N., and Harris, R. B.,J. Prot. Chem. 9, 647–659, 1990). We were thus able to predict that N- or C-terminal truncations of the binding-site sequence would disrupt the conformational integrity required for binding. Two new peptides of 20- and 22- residues have now been synthesized and their solution phase structures examined. These peptides are N- and C-terminal truncations, respectively, of the 27-residue sequence and correspond to the sequences Asp576-Lys595 and Trp569-Asp590 of high molecular weight kininogen. The results of fluorescence emission and circular dichroism (CD) spectroscopies in the range 25–90°C and from differential scanning calorimetry (DSC) all substantiate the idea that the C-terminal truncation peptide binds prekallikrein 35-fold poorer than the 31-residue peptide because it is relatively unoredered and possesses a less stable structure. Surprisingly, the N-terminal truncation peptide (20-mer) shows structural stability even at elevated temperatures and, like the 31-residue peptide, undergoes cold-induced denaturation observable in the DSC. 2D-NMR analysis of the 20-residue peptide revealed two distinct structures; one conformer possesses a more compact, folded structure than the other. However, the predicted structures assumed by either conformer are very different from those of either the 31- or 27-residue peptides. Hence, the binding affinity of the 20-residue peptide is 60-fold poorer than that for the 31-residue peptide because it assumes a nonproductive binding conformation(s).  相似文献   

7.
Factor XI (FXI) binds specifically and reversibly to high affinity sites on the surface of stimulated platelets (Kd app of approximately 10 nm; Bmax of approximately 1,500 sites/platelet) utilizing residues exposed on the Apple 3 domain in the presence of high molecular weight kininogen and Zn2+ or prothrombin and Ca2+. Because the FXI receptor in the platelet membrane is contained within the glycoprotein Ibalpha subunit of the glycoprotein Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), we utilized mocarhagin, a cobra venom metalloproteinase, to generate a fragment (His1-Glu282) of glycoprotein Ibalpha that contains the leucine-rich repeats of the NH2-terminal globular domain and excludes the macroglycopeptide portion of glycocalicin, the soluble extracytoplasmic portion of glycoprotein Ibalpha. This fragment was able to compete with FXI for binding to activated platelets (Ki of 3.125 +/- 0.25 nm) with a potency similar to that of intact glycocalicin (Ki of 3.72 +/- 0.30 nm). However, a synthetic glycoprotein Ibalpha peptide, Asp269-Asp287, containing a thrombin binding site had no effect on the binding of FXI to activated platelets. Moreover, the binding of 125I-labeled thrombin to glycocalicin was unaffected by the presence of FXI at concentrations up to 10(-5) m. The von Willebrand factor A1 domain, which binds the leucine-rich repeats, inhibited the binding of FXI to activated platelets. Thus, we examined the effect of synthetic peptides of each of the seven leucine-rich repeats on the binding of 125I-FXI to activated platelets. All leucine-rich repeat (LRR) peptides derived from glycoprotein Ibalpha were able to inhibit FXI binding to activated platelets in the following order of decreasing potency: LRR7, LRR1, LRR4, LRR5, LRR6, LRR3, and LRR2. However, the leucine-rich repeat synthetic peptides derived from glycoprotein Ibbeta and Toll protein had no effect. We conclude that FXI binds to glycoprotein Ibalpha at sites comprising the leucine-rich repeat sequences within the NH2-terminal globular domain that are separate and distinct from the thrombin-binding site.  相似文献   

8.
Previous studies on the interaction of high molecular weight kininogen (HK) with endothelial cells have reported a large number of binding sites (106-107 sites/cell) with differing relative affinities (KD = 7-130 nm) and have implicated various receptors or receptor complexes. In this study, we examined the binding of HK to human umbilical vein endothelial cells (HUVEC) with a novel assay system utilizing HUVEC immobilized on microcarrier beads, which eliminates the detection of the high affinity binding sites found nonspecifically in conventional microtiter well assays. We report that HK binds to 8.5 x 104 high affinity (KD = 21 nm) sites per HUVEC, i.e. 10-100-fold fewer than previously reported. Although HK binding is unaffected by the presence of a physiological concentration of prekallikrein, factor XI abrogates HK binding to HUVEC in a concentration-dependent manner. Disruption of the naturally occurring complex between factor XI and HK by the addition of a 31-amino acid peptide mimicking the factor XI-binding site on HK restored HK binding to HUVEC. Furthermore, HK inhibited thrombin-stimulated von Willebrand factor release by HUVEC but not thrombin receptor activation peptide (SFLLRN-amide)-stimulated von Willebrand factor release. Factor XI restored the ability of thrombin to stimulate von Willebrand factor release in the presence of low HK concentrations. These results suggest that free HK, or HK in complex with prekallikrein but not in complex with factor XI, interacts with the endothelium and can maintain endothelial cell quiescence by preventing endothelial stimulation by thrombin.  相似文献   

9.
Miller TN  Sinha D  Baird TR  Walsh PN 《Biochemistry》2007,46(50):14450-14460
The zymogen, factor XI, and the enzyme, factor XIa, interact specifically with functional receptors on the surface of activated platelets. These studies were initiated to identify the molecular subdomain within factor XIa that binds to activated platelets. Both factor XIa (Ki approximately 1.4 nM) and a chimeric factor XIa containing the Apple 3 domain of prekallikrein (Ki approximately 2.7 nM) competed with [125I]factor XIa for binding sites on activated platelets, suggesting that the factor XIa binding site for platelets is not located in the Apple 3 domain which mediates factor XI binding to platelets. The recombinant catalytic domain (Ile370-Val607) inhibited the binding of [125I]factor XIa to the platelets (Ki approximately 3.5 nM), whereas the recombinant factor XI heavy chain did not, demonstrating that the platelet binding site is located in the light chain of factor XIa. A conformationally constrained cyclic peptide (Cys527-Cys542) containing a high-affinity (KD approximately 86 nM) heparin-binding site within the catalytic domain of factor XIa also displaced [125I]factor XIa from the surface of activated platelets (Ki approximately 5.8 nM), whereas a scrambled peptide of identical composition was without effect, suggesting that the binding site in factor XIa that interacts with the platelet surface resides in the catalytic domain near the heparin binding site of factor XIa. These data support the conclusion that a conformational transition accompanies conversion of factor XI to factor XIa that conceals the Apple 3 domain factor XI (zymogen) platelet binding site and exposes the factor XIa (enzyme) platelet binding site within the catalytic domain possibly comprising residues Cys527-Cys542.  相似文献   

10.
Initiation of the coagulation protease cascade as it assembles on cell surfaces requires limited proteolytic activation of the zymogen factor X. Not previously suspected to be the ligand of an organizing receptor on cell surfaces, we now describe that factor X specifically associates with cells of monocyte lineage and we identify the high affinity receptor for this zymogen. Following stimulation with ADP (10 microM), or with the ionophore ionomycin (1 microM), isolated human monocytes bind 125I-factor X in a saturable fashion with a dissociation constant (Kd) of 21.8-44.9 nM. Equilibrium binding analyses indicate that the reaction is optimal at room temperature, requires Ca2+ ions, and saturates at 128,500 +/- 21,300 molecules of 125I-factor X specifically associated with the cell surface. Molar excess of unlabeled factor X inhibits and reverses the binding, whereas the homologous gamma-carboxylated coagulation proteins factors II, VII, IX, IXa, and Xa are without effect. Similarly, chelation of divalent ions immediately dissociates bound 125I-factor X. The monoblast cell line U 937 and the monocytic cell line THP-1 when stimulated with ADP or ionomycin, bind 125I-factor X with characteristics similar to monocytes. Receptor identity was explored using antibodies to the leukocyte adhesive receptors Mac-1, LFA-1, and p150.95. Monoclonal antibodies specific for the alpha subunit of Mac-1 (M 1/70, LM 2/1) or for the common beta subunit (TS 1/18, 60.3) bound equally to resting and ADP- or ionomycin-stimulated cells and also completely blocked the binding of 125I-factor X to stimulated monocytes, U 937, or THP-1 cells. To distinguish between modulatory effects of the monoclonal antibodies and direct spatial hindrance binding of 125I-factor X to Mac-1 was analyzed directly. OKM10 anti-alpha subunit of Mac-1 monoclonal antibody immunoprecipitated 125I-factor X chemically cross-linked to its receptor on stimulated cells. In addition, the complement protein fragment C3bi, which is a recognized ligand for Mac-1, competitively inhibited the association of 125I-factor X. These findings indicate that human blood monocytes and less differentiated cells of this lineage possess an inducible receptor specific for factor X; and also support the conclusion that the heterodimeric leukocyte adhesive receptor Mac-1 functions as the specific receptor structure. We suggest that the novel properties of this receptor may be of importance in the organization and regulation of certain coagulation protease cascades on the monocyte surface.  相似文献   

11.
Human blood coagulation Factor XIa was reduced and alkylated under mild conditions. The mixture containing alkylated heavy and light chains was subjected to affinity chromatography on high Mr kininogen-Sepharose. Alkylation experiments using [14C]iodoacetamide showed that a single disulfide bridge between the light and heavy chains was broken to release the light chain. The alkylated light chain (Mr = 35,000) did not bind to high Mr kininogen-Sepharose while the heavy chain (Mr = 48,000), like Factors XI and XIa, bound with high affinity. The isolated light chain retained the specific amidolytic activity of native Factor XIa against the oligopeptide substrate, pyroGlu-Pro-Arg-p-nitroanilide. Km and kcat values for this substrate were 0.56 mM and 350 s-1 for both Factor XIa and its light chain, and the amidolytic assay was not affected by CaCl2. However, in clotting assays using Factor XI-deficient plasma in the presence of kaolin, the light chain was only 1% as active as native Factor XIa. Human coagulation Factor IX was purified and labeled with sodium [3H]borohydride on its carbohydrate moieties. When this radiolabeled Factor IX was mixed with Factor XIa, an excellent correlation was observed between the appearance of Factor IXa clotting activity and tritiated activation peptide that was soluble in cold trichloroacetic acid. Factor XIa in the presence of 5 mM CaCl2 activated 3H-Factor IX 600 times faster than Factor XIa in the presence of EDTA. In the absence of calcium, Factor XIa and its light chain were equally active in activating 3H-Factor IX. In contrast to Factor XIa, the light chain in this reaction was inhibited by calcium ions such that, in the presence of 5 mM CaCl2, Factor XIa was 2000 times more effective than its light chain. Neither phospholipid nor high Mr kininogen and kaolin affected the activity of Factor XIa or its light chain in the activation of 3H-Factor IX. These observations show that the light chain region of Factor XIa contains the entire enzymatic active site. The heavy chain region contains the high affinity binding site for high Mr kininogen. Furthermore the heavy chain region of Factor XIa plays a major role in the calcium-dependent mechanisms that contribute to the activation of Factor IX.  相似文献   

12.
Domains 3 and 5 of high-molecular-weight kininogen (HK) have been shown to bind to platelets in a zinc-dependent reaction. However, the platelet-binding proteins responsible for this interaction have not been identified. We have focused on the platelet-binding site for the heavy chain (domain 3), which we approached using a domain 3-derived peptide ligand and isolated binding proteins by affinity chromatography. The domain 3-derived peptide, thrombin, HK, factor XII, as well as antibody to glycocalicin (the N-terminal portion of the alpha chain of GPIb) recognized a protein at 74 kD. We also isolated the thrombin receptor (PAR 1) at 45 kD, however, none of the above-mentioned ligands bound to this protein. Isolation of platelet membrane proteins using a monoclonal anti-glycocalicin antibody column revealed the same HK binding protein at 74 kD, which was reactive with anti-GPIb and represents a GPIb fragment. By photoaffinity labeling, HK interacted with membrane GPIb, which was then isolated in native form (135 kD) along with gC1qR, a ligand for the HK light chain. Finally, (125)I-HK binding to platelets was significantly inhibited by the anti-GPIb antibody. These results suggest that the GPIb alpha chain, a known thrombin binding protein, is also one of the zinc-dependent platelet membrane binding sites for HK domain 3.  相似文献   

13.
Factor XI binds to high affinity sites on the surface of stimulated platelets where it is efficiently activated by thrombin. Here, we provide evidence that the factor XI binding site on platelets is in the glycoprotein (GP) Ibalpha subunit of the GP Ib-IX-V complex as follows. 1) Bernard-Soulier platelets, lacking the complex, are deficient in factor XI binding; 2) two GP Ibalpha ligands, SZ-2 (a monoclonal antibody) and bovine von Willebrand factor, inhibit factor XI binding to platelets; 3) by surface plasmon resonance, factor XI bound specifically to glycocalicin (the extracellular domain of GP Ibalpha) in Zn(2+)-dependent fashion (K(d)( app) approximately 52 nm). We then investigated whether glycocalicin could promote factor XI activation by thrombin, another GP Ibalpha ligand. In the presence of high molecular weight kininogen (45 nm), Zn(2+) and Ca(2+) ions, thrombin activated factor XI in the presence of glycocalicin at rates comparable with those seen in the presence of dextran sulfate (1 microg/ml). With higher high molecular weight kininogen concentrations (360 nm), the rate of thrombin-catalyzed factor XI activation in the presence of glycocalicin was comparable with that on activated platelets. Thus, factor XI binds to the GP Ib-IX-V complex, promoting its activation by thrombin.  相似文献   

14.
The binding of the competitive antagonist alpha-bungarotoxin (alpha-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the alpha-subunit of the Torpedo acetylcholine receptor has been characterized. 125I-alpha-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by alpha-Btx (IC50 = 5.0 x 10(-8) M), d-tubocurarine (IC50 = 5.9 X 10(-5)M), and NaCl (IC50 = 7.9 x 10(-2)M). In the presence of 0.02% sodium dodecyl sulfate, 125I-alpha-Btx bound to the 56-residue peptide with a KD of 3.5 nM, as determined by equilibrium saturation binding studies. Because alpha-Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, [3H]PCP was bound to the 172-227 peptide. [3H]PCP binding was inhibited by chlorpromazine (IC50 = 6.3 x 10(-5)M), tetracaine (IC50 = 4.2 x 10(-6)M), and dibucaine (IC50 = 2.7 x 10(-4)M). Equilibrium saturation binding studies in the presence of 0.02% sodium dodecyl sulfate showed that [3H]PCP bound at two sites, a major site of high affinity with an apparent KD of 0.4 microM and a minor low-affinity site with an apparent KD of 4.6 microM. High -affinity binding occurred at a single site on peptide 205-227 (KD = 0.27 microM) and was competed by chlorpromazine but not by alpha-Btx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ho DH  Baglia FA  Walsh PN 《Biochemistry》2000,39(2):316-323
To localize the platelet binding site on factor XI, rationally designed, conformationally constrained synthetic peptides were used to compete with [(125)I]factor XI binding to activated platelets. The major platelet binding energy resided within the sequence of amino acids T(249)-F(260). Homology scanning, using prekallikrein amino acid substitutions within the synthetic peptide T(249)-F(260), identified a major role for R(250) in platelet binding. Inhibition of [(125)I]factor XI binding to activated platelets by the recombinant Apple 3 domain of factor XI and inhibition by unlabeled factor XI were identical, whereas the recombinant Apple 3 domain of prekallikrein had little effect. A "gain-of-function" chimera in which the C-terminal amino acid sequence of the Apple 3 domain of prekallikrein was replaced with that of factor XI was as effective as the recombinant Apple 3 domain of factor XI and unlabeled factor XI in inhibiting [(125)I]factor XI binding to activated platelets. Alanine scanning mutagenic analysis of the recombinant Apple 3 domain of factor XI indicated that amino acids R(250), K(255), F(260), and Q(263) (but not K(252) or K(253)) are important for platelet binding. Thus, the binding energy mediating the interaction of factor XI with platelets is contained within the C-terminal amino acid sequence of the Apple 3 domain (T(249)-V(271)) and is mediated in part by amino acid residues R(250), K(255), F(260), and Q(263).  相似文献   

16.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   

17.
Binding of coagulation factor XI to washed human platelets   总被引:8,自引:0,他引:8  
The binding of human coagulation factor XI to washed human platelets was studied in the presence of zinc ions, calcium ions, and high molecular weight kininogen. Significant factor XI binding occurred at physiological levels of these metal ions when high molecular weight kininogen was present. Binding required platelet stimulation and was specific, reversible, and saturable. Scatchard analysis of the binding yielded approximately 1500 binding sites per platelet with an apparent dissociation constant of approximately 10 nM. Since the concentration of factor XI in plasma is about 25 nM, this suggests that in plasma factor XI binding sites on stimulated platelets might be saturated. Calcium ions and high molecular weight kininogen acted synergistically to enhance the ability of low concentrations of zinc ions to promote factor XI binding. The similarity between the concentrations of metal ions optimal for factor XI binding and those optimal for high molecular weight kininogen binding, as well as the ability of high molecular weight kininogen to modulate these metal ion effects, implies that factor XI and high molecular weight kininogen may form a complex on the platelet surface as they do in solution and on artificial negatively charged surfaces.  相似文献   

18.
Synthetic peptides were used to probe the structure-function relationships between human choriotropin (hCG) and the lutropin (LH) receptor. Previously, a peptide region of the alpha subunit of hCG, residues 26-46, had been shown to inhibit binding of 125I-hCG to the LH receptor in rat ovarian membranes (Charlesworth, M.C., McCormick, D.J., Madden, B., and Ryan, R.J. (1987) J. Biol. Chem. 262, 13409-13416). To determine which residues are important for this inhibitory activity, peptides were truncated from either the amino or carboxyl terminus, or individual residues were substituted with alanine. The amino-terminal boundary was determined to be Gly-30 and the carboxyl-terminal boundary, Lys-44. This core peptide contained all the residues needed for full activity of the parent peptide 26-46. Arg-35 and Phe-33 were particularly important residues; when they were substituted with alanine, the peptide inhibitory potencies were decreased. Ser-43, Arg-42, Cys-32, and Cys-31 were also important but to a lesser degree. These results are consistent with predictions based on chemical and enzymatic modification studies and provide insight into which residues are important for interaction between hCG and the LH receptor.  相似文献   

19.
High molecular weight (H-)kininogen, a non-enzymatic cofactor of the contact activation system, has on the COOH-terminal part of its light chain a unique binding site which complexes prekallikrein or factor XI with high affinity and specificity. In a conventional protein fragmentation approach, the prekallikrein-binding site was mapped to positions 556-595 of the human H-kininogen sequence (Tait, J. F., and Fujikawa, K. (1986) J. Biol. Chem. 261, 15396-15401). To gain more insight into the minimum structural requirements of the prekallikrein-binding site, we have developed an alternative strategy employing the lambda gt11 expression cloning system. A ligand assay was established which probes for the binding site in H-kininogen or recombinant fusion proteins thereof by complexation with prekallikrein, followed by a specific antibody against prekallikrein and a secondary labeled antibody. A cDNA library constructed in lambda gt11 from random fragments of a cDNA clone encoding the COOH-terminal part of the kininogen light chain was screened by the ligand assay, and 17 positive clones were identified. Analysis of their inserted cDNA sequences revealed a consensus sequence of 119 nucleotides which maps to the extreme 3' end (positions 1759-1877) of the coding part of the prekininogen mRNA. The consensus sequence encodes positions 569-607 of the kininogen light chain and overlaps by 27 residues (positions 569-595) with the binding segment identified previously by the fragment approach. Analysis of successively shortened peptides revealed that the common segment of 27 residues but not truncated versions thereof contains the essential structural elements for prekallikrein binding. This conclusion was corroborated by the finding that anti-idiotypic antibodies toward a monoclonal antibody directed to the binding segment of 27 residues bear internal image(s) of the binding site of H-kininogen. It is pointed out that the methodology described in this study may prove generally useful in the cloning and mapping of high affinity binding sites of proteins.  相似文献   

20.
Factor XI binds to activated platelets where it is efficiently activated by thrombin. The factor XI receptor is the platelet membrane glycoprotein (GP) Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), a significant fraction of which exists within lipid rafts on stimulated platelets (Shrimpton, C. N., Borthakur, G., Larrucea, S., Cruz, M. A., Dong, J. F., and Lopez, J. A. (2002) J. Exp. Med. 196, 1057-1066). Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids implicated in localizing membrane ligands and in cellular signaling. We now show that factor XI was localized to lipid rafts in activated platelets ( approximately 8% of total bound) but not in resting platelets. Optimal binding of factor XI to membrane rafts required prothrombin (and Ca2+) or high molecular weight kininogen (and Zn2+), which are required for factor XI binding to platelets. An antibody to GPIb (SZ-2) that disrupts factor XI binding to the GPIb-IX-V complex also disrupted factor XI-raft association. The isolated recombinant Apple 3 domain of factor XI, which mediates factor XI binding to platelets, also completely displaces factor XI from membrane rafts. To investigate the physiological relevance of the factor XI-raft association, the structural integrity of lipid rafts was disrupted by cholesterol depletion utilizing methyl-beta-cyclodextrin. Cholesterol depletion completely prevented FXI binding to lipid rafts, and initial rates of factor XI activation by thrombin on activated platelets were inhibited >85%. We conclude that factor XI is localized to GPIb in membrane rafts and that this association is important for promoting the activation of factor XI by thrombin on the platelet surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号