首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells.  相似文献   

2.
The enzyme 5-lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid into the leukotrienes, which are critical regulators of inflammation and inflammatory diseases, such as asthma and arthritis. Although leukotrienes are present in the synovial fluid of Lyme disease patients, their role in the development of Lyme arthritis has not been determined. In the current study, we used a murine model of Lyme arthritis to investigate the role 5-LO products might have in the development of this inflammatory disease. After infection of Lyme arthritis-susceptible C3H/HeJ mice with Borrelia burgdorferi, mRNA expression of 5-LO and 5-LO-activating protein was induced in the joints, and the 5-LO product leukotriene B(4) was produced. Using C3H 5-LO-deficient mice, we demonstrated that 5-LO activity was not necessary for the induction of Lyme arthritis, but that its deficiency resulted in earlier joint swelling and an inability to resolve arthritis as demonstrated by sustained arthritis pathology through day 60 postinfection. Although production of anti-Borrelia IgG was decreased in 5-LO-deficient mice, bacterial clearance from the joints was unaffected. Phagocytosis of B. burgdorferi and efferocytosis of apoptotic neutrophils was defective in macrophages from 5-LO-deficient mice, and uptake of opsonized spirochetes by neutrophils was reduced. These results demonstrate that products of the 5-LO metabolic pathway are not required for the development of disease in all models of arthritis and that caution should be used when targeting 5-LO as therapy for inflammatory diseases.  相似文献   

3.
5-lipoxygenase and FLAP   总被引:15,自引:0,他引:15  
The initial steps in the biosynthesis of leukotrienes from arachidonic acid are carried out by the enzyme 5-lipoxygenase (5-LO). In intact cells, the helper protein 5-LO activating protein (FLAP) is necessary for efficient enzyme utilization of endogenous substrate. The last decade has witnessed remarkable progress in our understanding of these two proteins. Here we review the molecular and cellular aspects of the expression, function, and regulation of 5-LO and FLAP.  相似文献   

4.
5-Lipoxygenase (5-LO) is a key enzyme involved into biosynthesis of leukotrienes (LTs), mediating the host defense system, and acting simultaneously as inflammatory agents. In this work the effect of anionic cholesterol derivatives on 5-LO activity has been investigated. Cholesterol sulfate activates human polymorphonuclear leukocytes (PMNL) and stimulates their adhesion to endothelium and collagen. Cholesterol sulfate and cholesterol phosphate suppressed leukotriene production in PMNL and in rat basophil leukemia (RBL-1) cell line as well as in homogenates of these cells. Kinetic characteristics of the effect of anionic cholesterol derivatives on leukotriene synthesis have been obtained. In all experiments cholesterol phosphate (charge-2) was shown to be more potent inhibitor than cholesterol sulfate (charge-1). We believe that this fact highlights the importance of negatively charged ester groups for suppression of 5-LO activity.  相似文献   

5.
In a previous study, osteosarcoma cells expressing both 5-lipoxygenase (5-LO) and 5 lipoxygenase-activating protein (FLAP) synthesized leukotrienes upon A23187 stimulation (Dixon, R. A. F., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. Nature (Lond.). 343:282-284). Osteosarcoma cells expressing 5-LO but not expressing FLAP were unable to synthesize leukotrienes. Thus, it was determined that FLAP was required for the cellular synthesis of leukotrienes. To examine the role of FLAP in A23187-induced translocation of 5-LO to a membrane fraction, we have studied the A23187-stimulated translocation of 5-LO in osteosarcoma cells expressing both 5-LO and FLAP, and in osteosarcoma cells expressing 5-LO only. We demonstrate that in cells expressing both 5-LO and FLAP, 5-LO translocates to membranes in response to A23187 stimulation. This 5-LO translocation is inhibited when cells are stimulated in the presence of MK-886. In osteosarcoma cells expressing 5-LO but not expressing FLAP, 5-LO is able to associate with membranes following A23187 stimulation. In contrast to the cells containing both 5-LO and FLAP, MK-886 is unable to prevent 5-LO membrane association in cells transfected with 5-LO alone. Therefore, we have demonstrated that in this cell system, 5-LO membrane association and activation can be separated into at least two distinct steps: (1) calcium-dependent movement of 5-LO to membranes without product formation, which can occur in the absence of FLAP (membrane association), and (2) activation of 5-LO with product formation, which is FLAP dependent and inhibited by MK-886 (enzyme activation).  相似文献   

6.
The interaction between ceruloplasmin (CP), the multicopper oxidase of human plasma, and 5-lipoxygenase (5-LO), the key enzyme of leukotriene synthesis, is shown for the first time. By Western-blotting and mass spectrometry of tryptic fragments, it is shown that 5-LO from protein extract of human leukocytes binds with immobilized CP. Dose-dependent influence of intact CP on leukotrienes synthesis is found: CP reduced leukotrienes synthesis in leukocytes in a dose above 50 μg/ml (normal CP concentration in plasma is about 300–400 μg/ml). Proteolyzed CP and apo-form of CP is unable to inhibit activity of 5-LO. CP increased activity of 5-LO at low doses (5–10 μg/ml). On the whole, the influence of CP on phagocytosis index of leukocytes coordinates with influence on activity of 5-LO: the index increased in the range of 2–10 μg/ml CP and decreased at doses of CP above 40 μg/ml. The dual role of CP in regulation of cellular response of leukocytes is discussed.  相似文献   

7.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Increased expression of 5-lipoxygenase (5-LO), a key enzyme in the biosynthesis of leukotrienes (LTs), has been reported in MS lesions and LT levels are elevated in the cerebrospinal fluid of MS patients. To determine whether pharmacological inhibition of 5-LO attenuates demyelination, MK886, a 5-LO inhibitor, was given to mice fed with cuprizone. Gene and protein expression of 5-LO were increased at the peak of cuprizone-induced demyelination. Although MK886 did not attenuate cuprizone-induced demyelination in the corpus callosum or in the cortex, it attenuated cuprizone-induced axonal damage and motor deficits and reduced microglial activation and IL-6 production. These data suggest that during cuprizone-induced demyelination, the 5-LO pathway contributes to microglial activation and neuroinflammation and to axonal damage resulting in motor dysfunction. Thus, 5-LO inhibition may be a useful therapeutic treatment in demyelinating diseases of the CNS.  相似文献   

8.
Mammalian 5-lipoxygenase (5-LO) catalyzes conversion of arachidonic acid to leukotrienes, potent mediators of inflammation and allergy. Upon cell stimulation, 5-LO selectively binds to nuclear membranes and becomes activated, yet the mechanism of recruitment of 5-LO to nuclear membranes and the mode of 5-LO-membrane interactions are poorly understood. Here we show that membrane fluidity is an important determinant of membrane binding strength of 5-LO, penetration into the membrane hydrophobic core, and activity of the enzyme. The membrane binding strength and activity of 5-LO increase with the degree of lipid acyl chain cis-unsaturation and reach a plateau with 1-palmitoyl-2-arachidonolyl-sn-glycero-3-phosphocholine (PAPC). A fraction of tryptophans of 5-LO penetrate into the hydrocarbon region of fluid PAPC membranes, but not into solid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes. Our data lead to a novel concept of membrane binding and activation of 5-LO, suggesting that arachidonic-acid-containing lipids, which are present in nuclear membranes at higher fractions than in other cellular membranes, may facilitate preferential membrane binding and insertion of 5-LO through increased membrane fluidity and may thereby modulate the activity of the enzyme. The data presented in this article and earlier data allow construction of a model for membrane-bound 5-LO, including the angular orientation and membrane insertion of the protein.  相似文献   

9.
5-Lipoxygenase (5-LO) is a Ca2+-stimulated enzyme that initializes the formation of proinflammatory leukotrienes from arachidonic acid (AA). In this report, we demonstrate that a soluble protein of the monocytic cell line Mono Mac 6 confers 5-LO activity Ca2+-dependent in vitro. Thus, in broken cell preparations of human polymorphonuclear leukocytes (PMNL) and rat basophilic leukemia (RBL)-1 cells, 5-LO converted AA (>20 microM) in the absence of Ca2+, whereas Ca2+ was absolutely required for 5-LO activity in broken cell preparations of MM6 cells. 5-LO partially purified from MM6 cells was substantially active in the absence of Ca2+. Recombination experiments revealed that the cytosolic fraction of MM6 cells contains a factor that suppresses the activity of partially purified 5-LO from PMNL, RBL-1, and MM6 cells in the absence but not in the presence of Ca2+. Further characterization showed that this factor is a 80-100 kDa heat-sensitive protein.  相似文献   

10.
The enzyme 5-lipoxygenase (5-LO) catalyzes the first two steps in the metabolism of arachidonic acid to leukotrienes, substances which play pivotal roles both in normal host defense and in pathologic states of inflammation. Recent studies in granulocytic cells have shown that activation of 5-LO involves its Ca(2+)-dependent translocation from cytosol to membrane compartments. However, little information exists about the molecular regulation of 5-LO in macrophages, even though these cells comprise the resident effector cell population of most organs. We therefore examined the levels of 5-LO activity and immunoreactive protein in cytosol and membrane fractions of resident rat alveolar (AM) and peritoneal macrophages (PM) and compared them with the well studied human neutrophil (polymorphonuclear leukocyte). In the resting state, PM resembled polymorphonuclear leukocyte in that most of their cell-free 5-LO activity, as well as protein content, were localized to the cytosol fraction. By contrast, resting AM contained most of their activity and almost half of their immunoreactive protein in the crude membrane fraction. The inability of the drug MK-886 to reverse this membrane association suggested that the 5-LO-activating protein was not the site of binding in the resting cell; however, this drug completely inhibited leukotriene B4 synthesis in ionophore A23187-stimulated AM, indicating that an interaction between 5-LO and 5-LO-activating protein was nonetheless required for product synthesis upon stimulation. Translocation of cytosolic 5-LO protein could not be convincingly demonstrated in A23187-stimulated AM, suggesting that the pool of 5-LO enzyme responsible for product formation originated in the membrane rather than the cytosol fraction of the resting cell. The AM therefore represents the first mammalian cell in which 5-LO has been recovered from the membrane fraction (a) of a resting cell and (b) in active form. These novel findings extend our understanding of the molecular regulation of 5-LO and may be of importance in designing strategies to limit inflammation in the lung and other sites.  相似文献   

11.
12.
Human 5-lipoxygenase (5-LO) is a key enzyme in the conversion of arachidonic acid into leukotrienes and lipoxins, mediators and modulators of inflammation. In this study, we localized a stimulatory Ca(2+)-binding site to the N-terminal region of the enzyme. Thus, in a (45)Ca(2+) overlay assay, the N-terminal 128 amino acids of recombinant human 5-LO (fused to glutathione S-transferase) bound radioactive calcium to about the same extent as intact 5-LO. The glutathione S-transferase fusion protein of the C-terminal part of 5-LO (amino acids 120-673) showed much weaker binding. A model of a putative 5-LO N-terminal domain was calculated based on the structure of rabbit reticulocyte 15-LO. This model resembles beta-sandwich C2 domains of other Ca(2+)-binding proteins. Comparison of our model with the C2 domain of cytosolic phospholipase A(2) suggested a number of amino acids, located in the loops that connect the beta-strands, as potential Ca(2+) ligands. Indeed, mutations particularly in loop 2 (N43A, D44A, and E46A) led to decreased Ca(2+) binding and a requirement for higher Ca(2+) concentrations to stimulate enzyme activity. Our data indicate that an N-terminal beta-sandwich of 5-LO functions as a C2 domain in the calcium regulation of enzyme activity.  相似文献   

13.
LPS from bacteria can result in the development of sepsis syndrome and acute lung injury. Although acute exposure to endotoxin primes leukocytes for enhanced synthesis of leukotrienes (LT), little is known about the effect of chronic exposure. Therefore, we determined the effect of prolonged LPS treatment on 5-lipoxygenase (5-LO) metabolism of arachidonic acid in alveolar macrophages (AM) and in peripheral blood monocytes. Pretreatment of AM with LPS caused time- and dose-dependent suppression of LT synthetic capacity. LPS pretreatment failed to inhibit arachidonic acid (AA) release. The fact that LPS inhibited LT synthesis from endogenous AA more than from exogenous AA suggested an effect on 5-LO-activating protein (FLAP). In addition, an inhibitory effect of LPS treatment on AM 5-LO activity was suggested by cell-free 5-LO enzyme assay. No effect on the expression of either 5-LO or FLAP proteins was observed. New protein synthesis was necessary for LPS-induced reduction of 5-LO metabolism in AM, and immunoblotting demonstrated marked induction of NO synthase (NOS). Inhibition by LPS was reproduced by an NO donor and was abrogated by inhibitors of constitutive and inducible NOS. Compared with AM, peripheral blood monocytes exhibited no suppression by LPS of 5-LO metabolism and no induction of inducible NOS. We conclude that prolonged exposure to LPS impairs AM 5-LO metabolism by NO-mediated suppression of both 5-LO and FLAP function. Because LT contribute to antimicrobial defense, this down-regulation of 5-LO metabolism may contribute to the increased susceptibility to pneumonia in patients following sepsis.  相似文献   

14.
BackgroundAbnormalities of the L-arginine-nitric oxide pathway induce hypertension. 5-Lipoxygenase (5-LO) is the key enzyme involved in synthesis of leukotrienes (LTs). However, whether nitricoxide synthase dysfunction induces hypertensive vascular remodeling by regulating 5-LO activity and its downstream inflammatory metabolites remains unknown.Methods and resultsSix-week L-NAME treatment significantly induced hypertension and vascular remodeling in both wild-type (WT) and 5-LO–knockout (5-LO–KO) mice, and blood pressure in caudal and carotid arteries was lower in 5-LO–KO than WT mice with L-NAME exposure. On histology, L-NAME induced less media thickness, media-to-lumen ratio, and collagen deposition and fewer Ki-67–positive vascular smooth muscle cells (VSMCs) but more elastin expression in thoracic and mesenteric aortas of 5-LO–KO than L-NAME–treated WT mice. L-NAME significantly increased LT content, including LTB4 and cysteinyl LT (CysLTs), in plasma and neutrophil culture supernatants from WT mice. On immunohistochemistry, L-NAME promoted the colocalization of 5-LO and 5-LO–activating protein on the nuclear envelope of cultured neutrophils, which was accompanied by elevated LT content in culture supernatants. In addition, LTs significantly promoted BrdU incorporation, migration and phenotypic modulation in VSMCs.ConclusionL-NAME may activate the 5-LO/LT pathway in immune cells, such as neutrophils, and promote the products of 5-LO metabolites, including LTB4 and CysLTs, which aggravate vascular remodeling in hypertension. 5-LO deficiency may protect against hypertension and vascular remodeling by reducing levels of 5-LO downstream inflammatory metabolites.  相似文献   

15.
5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes (LTs), biological mediators of host defense reactions and of inflammatory diseases. While the role of membrane binding in the regulation of 5-LO activity is well established, the effects of lipids on cellular activity when added to the medium has not been characterized. Here, we show such a novel function of the most abundant sulfated sterol in human blood, cholesterol sulfate (CS), to suppress LT production in human polymorphonuclear leukocytes (PMNL) and Mono Mac6 cells. We synthesized another anionic lipid, cholesterol phosphate, which demonstrated a similar capacity in suppression of LT synthesis in PMNL. Cholesteryl acetate was without effect. Cholesterol increased the effect of CS on 5-LO product synthesis. CS and cholesterol also inhibited arachidonic acid (AA) release from PMNL. Addition of exogenous AA increased the threshold concentration of CS required to inhibit LT synthesis. The effect of cholesterol and its anionic derivatives can arise from remodeling of the cell membrane, which interferes with 5-LO activation. The fact that cellular LT production is regulated by sulfated cholesterol highlights a possible regulatory role of sulfotransferases/sulfatases in 5-LO product synthesis.  相似文献   

16.
Leukotrienes produced from arachidonic acid by the action of 5-lipoxygenase (5-LO) are classical mediators of inflammatory responses. Recently, it has been demonstrated that leukotrienes also play an important role in host defense against microorganisms. In vitro studies have shown that leukotrienes augmented the anti-mycobacterial activity of neutrophils. In this study, we examined the role of leukotrienes in regulating host response and cytokine generation in a murine model of tuberculosis. Administration of the 5-LO pathway inhibitor MK 886, which reduced lung levels of both the leukotriene B(4) and the anti-inflammatory substance lipoxin A(4) by approximately 50%, increased 60-day mortality from 14% to approximately 57% in Mycobacterium tuberculosis-infected mice, and increased lung bacterial burden by approximately 15-fold. Although MK 886-treated animals exhibited no reduction in pulmonary leukocyte accumulation, they did manifest reduced levels of nitric oxide generation and of the protective type 1 cytokines interleukin-12 and gamma interferon. Together our results demonstrate that 5-LO pathway product(s) - presumably leukotrienes - positively regulate protective Th1 responses against mycobacterial infection in vivo. Moreover, the immunosuppressive phenotype in infected mice observed with MK 886 is most consistent with inhibition of an activator (LTB(4)) rather than a suppressor (LXA(4)) of antimicrobial defense, suggesting the major effect of leukotrienes.  相似文献   

17.
18.
We have previously demonstrated that exogenous nitric oxide (NO) directly inhibits alveolar macrophage (AM) cell-free activity of the enzyme 5-lipoxygenase (5-LO), thereby inhibiting metabolism of arachidonic acid to the important proinflammatory lipid mediators, leukotrienes (LT). Here, we explored the possibility that NO indirectly inhibited AM LT synthesis via activation of soluble guanylyl cyclase (sGC) in rat AM. The selective sGC inhibitor, LY83583, abrogated the suppression of cellular LT synthesis elicited by either exogenous or endogenous NO. A non-NO-dependent activator of sGC, YC-1, also inhibited macrophage LT synthesis. We next determined if sGC-mediated suppression of AM LT synthesis was dependent on protein kinase G (cGK). The selective cGK inhibitor, KT5823, reversed the suppression of cellular 5-LO metabolism following treatment with exogenous NO and YC-1. cGK1 activation resulted in phosphorylation of 5-LO. In contrast to peritoneal macrophages, AM exhibited localization of sGC, cGK1 and cGKII to the cell nucleus. In summary, in addition to its direct effects, NO-induced suppression of 5-LO action can be mediated indirectly through activation of the sGC and cGK pathways in AM. The nuclear localization of enzymes sGC, CGK1 and cGKII in the AM, which also demonstrates preferential nuclear 5-LO expression, may confer tighter regulation of LT synthesis.  相似文献   

19.
A wide variety of phenolic compounds and flavonoids present in spices possess potent antioxidant, antimutagenic and anticarcinogenic activities. We examined whether 5-lipoxygenase (5-LO), the key enzyme involved in biosynthesis of leukotrienes is a possible target for the spices. Effect of aqueous extracts of turmeric, cloves, pepper, chili, cinnamon, onion and also their respective active principles viz., curcumin, eugenol, piperine, capsaicin, cinnamaldehyde, quercetin, and allyl sulfide were tested on human PMNL 5-LO activity by spectrophotomeric and HPLC methods. The formation of 5-LO product 5-HETE was significantly inhibited in a concentration-dependent manner with IC(50) values of 0.122-1.44 mg for aqueous extracts of spices and 25-83 microM for active principles, respectively. The order of inhibitory activity was of quercetin>eugenol>curcumin>cinnamaldehyde>piperine>capsaicin>allyl sulfide. Quercetin, eugenol and curcumin with one or more phenolic ring and methoxy groups in their structure showed high inhibitory effect, while the non-phenolic spice principle allyl sulfide showed least inhibitory effect on 5-LO. The inhibitory effect of quercetin, curcumin and eugenol was similar to that of synthetic 5-LO inhibitors-phenidone and NDGA. Moreover, the inhibitory potency of aqueous extracts of spice correlated with the active principles of their respective spices. The synergistic or antagonistic effect of mixtures of spice active principles and spice extracts were investigated and all the combinations of spice active principles/extracts exerted synergistic effect in inhibiting 5-LO activity. These findings clearly suggest that phenolic compounds present in spices might have physiological role in modulating 5-LO pathway.  相似文献   

20.
5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号