首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Phosphomannomutases (PMMs) are crucial for the glycosylation of glycoproteins. In humans, two highly conserved PMMs exist: PMM1 and PMM2. In vitro both enzymes are able to convert mannose-6-phosphate (mannose-6-P) into mannose-1-P, the key starting compound for glycan biosynthesis. However, only mutations causing a deficiency in PMM2 cause hypoglycosylation, leading to the most frequent type of the congenital disorders of glycosylation (CDG): CDG-Ia. PMM1 is as yet not associated with any disease, and its physiological role has remained unclear. We generated a mouse deficient in Pmm1 activity and documented the expression pattern of murine Pmm1 to unravel its biological role. The expression pattern suggested an involvement of Pmm1 in (neural) development and endocrine regulation. Surprisingly, Pmm1 knockout mice were viable, developed normally, and did not reveal any obvious phenotypic alteration up to adulthood. The macroscopic and microscopic anatomy of all major organs, as well as animal behavior, appeared to be normal. Likewise, lectin histochemistry did not demonstrate an altered glycosylation pattern in tissues. It is especially striking that Pmm1, despite an almost complete overlap of its expression with Pmm2, e.g., in the developing brain, is apparently unable to compensate for deficient Pmm2 activity in CDG-Ia patients. Together, these data point to a (developmental) function independent of mannose-1-P synthesis, whereby the normal knockout phenotype, despite the stringent conservation in phylogeny, could be explained by a critical function under as-yet-unidentified challenge conditions.  相似文献   

2.
Phosphomannomutases catalyze the reversible conversion of mannose 6-phosphate to mannose 1-phosphate. In humans, two different isozymes have recently been identified, PMM1 and PMM2. We have previously shown that mutations in the PMM2 gene cause the most frequent type of the congenital disorders of glycosylation, CDG-Ia. Here, we present data on the two mouse orthologous genes, Pmm1 and Pmm2. The chromosomal localization of the two mouse genes has been determined. We also present the gene structure and the exon-intron organization of Pmm1 and Pmm2. Pmm1 maps to mouse chromosome 15, Pmm2 to chromosome 16. These chromosomal regions are syntenic with regions on human chromosomes 22 and 16, respectively. The Pmm1 gene is composed of eight exons and spans approximately 9.5 kb. The genomic structure is extremely well conserved between the human and mouse gene. The Pmm2 gene consists of eight exons and spans a larger genomic region (≈20 kb). An alignment of the human and mouse protein sequences confirms the conservation among this family of phosphomannomutases. The two mouse genes are expressed in many tissues, but the expression pattern is slightly different between Pmm1 and Pmm2. The most striking difference is the high expression of Pmm1 in brain tissue, whereas Pmm2 is only weakly expressed in this tissue.  相似文献   

3.
Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.  相似文献   

4.
Congenital disorder of glycosylation-Ia (CDG-Ia, also known as PMM2-CDG) is caused by mutations in the gene that encodes phosphomannomutase 2 (PMM2, EC 5.4.2.8) leading to a multisystemic disease with severe psychomotor and mental retardation. In a hypomorphic Pmm2 mouse model, we were able to overcome embryonic lethality by feeding mannose to pregnant dams. The results underline the essential role of glycosylation in embryonic development and may open new treatment options for this disease.  相似文献   

5.
Phosphomannomutase (PMM) deficiency causes congenital disorder of glycosylation (CDG)-Ia, a broad spectrum disorder with developmental and neurological abnormalities. PMM converts mannose 6-phosphate (M6P) to mannose-1-phosphate, a precursor of GDP-mannose used to make Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (lipid-linked oligosaccharide; LLO). LLO, in turn, is the donor substrate of oligosaccharyltransferase for protein N-linked glycosylation. Hepatically produced N-linked glycoproteins in CDG-Ia blood are hypoglycosylated. Upon labeling with [(3)H]mannose, CDG-Ia fibroblasts have been widely reported to accumulate [(3)H]LLO intermediates. Since these are thought to be poor oligosaccharyltransferase substrates, LLO intermediate accumulation has been the prevailing explanation for hypoglycosylation in patients. However, this is discordant with sporadic reports of specific glycoproteins (detected with antibodies) from CDG-Ia fibroblasts being fully glycosylated. Here, fluorophore-assisted carbohydrate electrophoresis (FACE, a nonradioactive technique) was used to analyze steady-state LLO compositions in CDG-Ia fibroblasts. FACE revealed that low glucose conditions accounted for previous observations of accumulated [(3)H]LLO intermediates. Additional FACE experiments demonstrated abundant Glc(3)Man(9)GlcNAc(2)-P-P-dolichol, without hypoglycosylation, CDG-Ia fibroblasts grown with physiological glucose. This suggested a "missing link" to explain hypoglycosylation in CDG-Ia patients. Because of the possibility of its accumulation, the effects of M6P on glycosylation were explored in vitro. Surprisingly, M6P was a specific activator for cleavage of Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This led to futile cycling the LLO pathway, exacerbated by GDP-mannose/PMM deficiency. The possibilities that M6P may accumulate in hepatocytes and that M6P-stimulated LLO cleavage may account for both hypoglycosylation and the clinical failure of dietary mannose therapy with CDG-Ia patients are discussed.  相似文献   

6.
An efficient and convergent method for the synthesis of mannose-1-phosphate prodrugs is described as a potential therapy for congenital disorders of glycosylation-Ia (CDG-Ia). The key feature of the proposed approach is the silver assisted nucleophilic substitution of 2,3,4,6-tetra-O-protected-alpha-d-mannopyranosyl bromides with various silver phosphate salts to afford mono, di, and tri-mannopyranosyl phosphates. A preliminary biological evaluation of the synthesized phosphate prodrugs has been carried out.  相似文献   

7.
Congenital disorders of glycosylation (CDG) are a group of multisystemic disorders resulting from defects in the synthesis and processing of N-linked oligosaccharides. The most common form, CDG type Ia (CDG-Ia), results from a deficiency of the enzyme phosphomannomutase (PMM). PMM converts mannose 6-phosphate (man-6-P) to mannose-1-phosphate (man-1-P), which is required for the synthesis of GDP-mannose, a substrate for dolichol-linked oligosaccharide synthesis. The traditional assay for PMM, a coupled enzyme system based on the reduction of NADP(+) to NADPH using man-1-P as a substrate, has limitations in accuracy and reproducibility. Therefore, a more sensitive, direct test for PMM activity, based on the detection of the conversion of man-1-P to man-6-P by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), was developed. Using this assay, the activity of PMM was markedly deficient in fibroblasts and lymphoblasts from 23 patients with CDG-Ia (range 0-15.3% of control, average 4.9+/-4.7%) and also decreased in seven obligate heterozygotes (range 33.0-72.0% of control, average 52.2+/-14.7%). Unlike the spectrophotometric method, there was no overlap in PMM activity among patients, obligate heterozygotes, or controls. Thus, the PMM assay based on HPAEC-PAD has increased utility in the clinical setting, and can be used, together with transferrin isoelectric focusing, to diagnose patients with CDG-Ia and to identify heterozygotes when clinically indicated.  相似文献   

8.
Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate → mannose 1-phosphate) and MPI (mannose 6-phosphate ⇔ fructose 6-phosphate) deficiencies reduce the metabolic flux of mannose 6-phosphate (Man-6-P) into glycosylation, resulting in unoccupied N-glycosylation sites. Both PMM2 and MPI compete for the same substrate, Man-6-P. Daily mannose doses reverse most of the symptoms of MPI-deficient CDG-Ib patients. However, CDG-Ia patients do not benefit from mannose supplementation because >95% Man-6-P is catabolized by MPI. We hypothesized that inhibiting MPI enzymatic activity would provide more Man-6-P for glycosylation and possibly benefit CDG-Ia patients with residual PMM2 activity. Here we show that MLS0315771, a potent MPI inhibitor from the benzoisothiazolone series, diverts Man-6-P toward glycosylation in various cell lines including fibroblasts from CDG-Ia patients and improves N-glycosylation. Finally, we show that MLS0315771 increases mannose metabolic flux toward glycosylation in zebrafish embryos.  相似文献   

9.
In the mouse the insulin-like growth factor receptor type 2 gene (Igf2r) is imprinted and maternally expressed. Igf2r encodes a trans-membrane receptor that transports mannose-6-phosphate tagged proteins and insulin-like growth factor 2 to lysosomes. During development the receptor reduces the amount of insulin-like growth factors and thereby decreases embryonic growth. The dosage of the gene is tightly regulated by genomic imprinting, leaving only the maternal copy of the gene active. Although the function of Igf2r in development is well established, the function of imprinting the gene remains elusive. Gene targeting experiments in mouse have demonstrated that the majority of genes are not sensitive to gene dosage, and mice heterozygous for mutations generally lack phenotypic alterations. To investigate whether reduction of Igf2r gene dosage by genomic imprinting has functional consequences for development we generated a non-imprinted allele (R2Delta). We restored biallelic expression to Igf2r by deleting a critical element for repression of the paternal allele (region 2) in mouse embryonic stem cells. Maternal inheritance of the R2Delta allele has no phenotype; however, paternal inheritance results in biallelic expression of Igf2r, which causes a 20% reduction in weight late in embryonic development that persists into adulthood. Paternal inheritance of the R2Delta allele rescues the lethality of a maternally inherited Igf2r null allele and a maternally inherited Tme (T-associated maternal effect) mutation. These data show that the biological function of imprinting Igf2r is to increase birth weight and they also establish Igf2r as the Tme gene.  相似文献   

10.
Arf regulates interaction of GGA with mannose-6-phosphate receptor   总被引:1,自引:0,他引:1  
The role of ADP-ribosylation factor (Arf) in Golgi associated, γ-adaptin homologous, Arf-interacting protein (GGA)-mediated membrane traffic was examined. GGA is a clathrin adaptor protein that binds Arf through its GAT domain and the mannose-6-phosphate receptor through its VHS domain. The GAT and VHS domains interacted such that Arf and mannose-6-phosphate receptor binding to GGA were mutually exclusive. In vivo , GGA bound membranes through either Arf or mannose-6-phosphate receptor. However, mannose-6-phosphate receptor excluded Arf from GGA-containing structures outside of the Golgi. These data are inconsistent with predictions based on the model for Arf's role in COPI veside coat function. We propose that Arf recruits GGA to a membrane and then, different from the current model, 'hands-off' GGA to mannose-6-phosphate receptor. GGA and mannose-6-phosphate receptor are then incorporated into a transport intermediate that excludes Arf .  相似文献   

11.
Recently, the sequence of the human receptor for insulin-like growth factor II (IGF-II) was found to be 80% identical [Morgan et al., (1987) Nature 329, 301-307] to the sequence of a partial clone of the bovine cation-independent mannose-6-phosphate receptor [Lobel et al., (1987) Proc. Natl. Acad. Sci. USA 84, 2233-2237]. In the present study, the purified receptor for insulin-like growth factor II (IGF-II) was found to react with two different polyclonal antibodies to the purified mannose-6-phosphate receptor. Moreover, mannose-6-phosphate was found to stimulate the binding of labeled IGF-II to the IGF-II receptor by two-fold. This effect had the same specificity and affinity as the reported binding of mannose-6-phosphate to its receptor; mannose-1-phosphate and mannose had no effect on the binding of labeled IGF-II to its receptor, and the half-maximally effective concentration of mannose-6-phosphate was 0.3 mM. Also, mannose-6-phosphate did not affect labeled IGF-II binding to the insulin receptor. These results support the hypothesis that a single protein of Mr-250,000 binds both IGF-II and mannose-6-phosphate. Furthermore, they indicate that mannose-6-phosphate can modulate the interaction of IGF-II to its receptor.  相似文献   

12.
Recent studies have established that in mammalian cells insulin-like growth factor-II can couple the large mannose-6-phosphate receptor to a GTP-binding protein and that the insulin-like growth factor-II-induced activation of the GTP-binding protein is inhibited by mannose-6-phosphate and lysosomal enzymes. In mouse, the gene for the large mannose-6-phosphate receptor is maternally imprinted.  相似文献   

13.
beta-glucocerebrosidase, the enzyme defective in Gaucher disease, is targeted to the lysosome independently of the mannose-6-phosphate receptor. Affinity-chromatography experiments revealed that the lysosomal integral membrane protein LIMP-2 is a specific binding partner of beta-glucocerebrosidase. This interaction involves a coiled-coil domain within the lumenal domain. beta-glucocerebrosidase activity and protein levels were severely decreased in LIMP-2-deficient mouse tissues. Analysis of fibroblasts and macrophages isolated from these mice indicated that the majority of beta-glucocerebrosidase was secreted. Missorting of beta-glucocerebrosidase was also evident in vivo, as protein and activity levels were significantly higher in sera from LIMP-2-deficient mice compared to wild-type. Reconstitution of LIMP-2 in LIMP-2-deficient fibroblasts led to a rescue of beta-glucocerebrosidase levels and distribution. LIMP-2 expression also led to lysosomal transport of a beta-glucocerebrosidase endoplasmic reticulum retention mutant. These data support a role for LIMP-2 as the mannose-6-phosphate-independent trafficking receptor for beta-glucocerebrosidase.  相似文献   

14.
We showed previously that glucose-6-phosphatase activity was characterised in intact liver microsomes by a hysteretic transition between a rapid and a slower catalytic form of the enzyme. We have now further investigated the substrate specificity of these two kinetic forms. It was found that the pre-incubation of intact microsomes with mannose-6-phosphate or glucose-6-phosphate (50 microM for 30 s) suppressed the burst in glucose-6-phosphatase activity, that the hysteretic transition was reversible and that mannose-6-phosphate inhibited glucose-6-phosphate hydrolysis during the first seconds of incubation, but not anymore after the burst. Our results indicate (i) that mannose-6-phosphate is recognised by the enzyme and can promote the hysteretic transition and (ii) that the transient phase is part of the catalytic mechanism itself.  相似文献   

15.
The cholic acid CoA ligase activity of rat liver was quantitatively inactivated by proteolysis with pronase, chymotrypsin, subtilisin, or proteinase K in intact microsomal vesicles. Under the conditions employed, less than 14% of the lumenal mannose-6-phosphate phosphatase activity was lost, and the mannose-6-phosphate phosphatase activity remained highly latent. After microsomal integrity was disrupted with sodium deoxycholate, protease treatment resulted in a loss of greater than 74% of the mannose-6-phosphate phosphatase activity. Cholic acid CoA ligase activity was unaffected by preincubation of microsomes with sodium taurocholate under conditions that led to the complete expression of latent mannose-6-phosphate phosphatase activity. The data suggest that cholic acid CoA ligase activity is located on the cytoplasmic surface of hepatic microsomal vesicles.  相似文献   

16.
The aryl hydrocarbon receptor-associated protein 9, ARA9 (also known as XAP2 or AIP1), is a chaperone that is found in complexes with certain xenobiotic receptors, such as the aryl hydrocarbon receptor (AHR) and the peroxisome proliferator-activated receptor alpha (PPARalpha). In an effort to better understand the physiological role of ARA9 outside of its role in xenobiotic signal transduction, we generated a null allele at the Ara9 locus in mice. Mice with a homozygous deletion of this gene die at various time points throughout embryonic development. Embryonic lethality is accompanied by decreased blood flow to head and limbs, as well as a range of heart deformations, including double outlet right ventricle, ventricular-septal defects, and pericardial edema. The early cardiovascular defects observed in Ara9-null mice suggest an essential role for the ARA9 protein in cardiac development. The observation that the developmental aberrations in Ara9-null mice are distinct from those observed for disrupted alleles at Ahr or Pparalpha indicates that the role of ARA9 in cardiac development is independent of its interactions with its known xenobiotic receptor partners.  相似文献   

17.
Preadipocyte factor 1 (Pref-1/Dlk1) inhibits in vitro adipocyte differentiation and has been recently reported to be a paternally expressed imprinted gene at human chromosome 14q32. Studies on human chromosome 14 deletions and maternal uniparental disomy (mUPD) 14 suggest that misexpression of a yet-to-be-identified imprinted gene or genes present on chromosome 14 causes congenital disorders. We generated Pref-1 knockout mice to assess the role of Pref-1 in growth and in vivo adipogenesis and to determine the contribution of Pref-1 in mUPD. Pref-1-null mice display growth retardation, obesity, blepharophimosis, skeletal malformation, and increased serum lipid metabolites. Furthermore, the phenotypes observed in Pref-1-null mice are present in heterozygotes that harbor a paternally inherited, but not in those with a maternally inherited pref-1-null allele. Our results demonstrate that Pref-1 is indeed paternally expressed and is important for normal development and for homeostasis of adipose tissue mass. We also suggest that Pref-1 is responsible for most of the symptoms observed in mouse mUPD12 and human mUPD14. Pref-1-null mice may be a model for obesity and other pathologies of human mUPD14.  相似文献   

18.
Carbohydrate recognition by amyloid P component from human serum has been investigated by binding experiments using several glycosaminoglycans, polysaccharides and a series of structurally defined neoglycolipids and natural glycolipids. Two novel classes of carbohydrate ligands have been identified. The first is 6-phosphorylated mannose as found on lysosomal hydrolases, and the second is the 3-sulphated saccharides galactose, N-acetyl-galactosamine and glucuronic acid as found on sulphatide and other acidic glycolipids that occur in neural or kidney tissues or on subpopulations of lymphocytes. Binding to mannose-6-phosphate containing molecules and inhibition of binding by free mannose-6-phosphate and fructose-1-phosphate are features shared with mannose-6-phosphate receptors involved in trafficking of lysosomal enzymes. However, only amyloid P binding is inhibited by galactose-6-phosphate, mannose-1-phosphate and glucose-6-phosphate. These findings strengthen the possibility that amyloid P protein has a central role in amyloidogenic processes: first in formation of focal concentrations of lysosomal enzymes including proteases that generate fibril-forming peptides from amyloidogenic proteins, and second in formation of multicomponent complexes that include sulphoglycolipids as well as glycosaminoglycans. The evidence that binding to all of the acidic ligands involves the same polypeptide domain on amyloid P protein, and inhibition data using diffusible, phosphorylated monosaccharides, is potentially important leads to novel drug designs aimed at preventing or even reversing amyloid deposition processes without interference with essential lysosomal trafficking pathways.  相似文献   

19.
Leptospira interrogans synthesizes a range of mannose-containing glycoconjugates relevant for its virulence. A prerequisite in the synthesis is the availability of the GDP-mannose, produced from mannose-1-phosphate and GTP in a reaction catalyzed by GDP-mannose pyrophosphorylase. The gene coding for a putative enzyme in L. interrogans was expressed in Escherichia coli BL21(DE3). The identity of this enzyme was confirmed by electrospray-mass spectroscopy, Edman sequencing and immunological assays. Gel filtration chromatography showed that the dimeric form of the enzyme is catalytically active and stable. The recombinant protein was characterized as a mannose-1-phosphate guanylyltransferase. S 0.5 for the substrates were determined both in GDP-mannose pyrophosphorolysis: 0.20 mM (GDP-mannose), 0.089 mM (PPi), and 0.47 mM; and in GDP-mannose synthesis: 0.24 mM (GTP), 0.063 mM (mannose-1-phosphate), and 0.45 mM (Mg2+). The enzyme was able to produce GDP-mannose, IDP-mannose, UDP-mannose and ADP-glucose. We obtained a structural model of the enzyme using as a template the crystal structure of mannose-1-phosphate guanylyltransferase from Thermus thermophilus HB8. Binding of substrates and cofactor in the model agree with the pyrophosphorylases reaction mechanism. Our studies provide insights into the structure of a novel molecular target, which could be useful for detection of leptospirosis and for the development of anti-leptospiral drugs.  相似文献   

20.
Topological studies on rat liver microsomal cholesterol ester hydrolase   总被引:2,自引:0,他引:2  
Lateral and transversal distribution of cholesterol ester hydrolase activity in rat liver microsomal membranes has been studied. Total cholesterol ester hydrolase activity was found predominantly (75%) in rough microsomes though specific esterase activities were similar in rough and smooth microsomal fractions. The transversal asymmetry of the enzyme was examined using the criteria of protease sensitivity and latency of mannose-6-phosphate phosphatase. Cholesterol ester hydrolase resulted drastically inhibited by proteolysis with trypsin when microsomal integrity had been previously disrupted with sodium deoxycholate or sodium taurocholate. Under these conditions, most lumenal mannose-6-phosphate phosphatase activity was destroyed. However, cholesterol esterase was unaffected by preincubating microsomes with the detergent alone, which led to the complete expression of latent mannose-6-phosphate phosphatase or by preincubating them with trypsin, where less than a 15% of the lumenal mannose-6-phosphate phosphatase was lost. These findings suggest that cholesterol ester hydrolase activity is located on the lumenal surface of the hepatic microsomal vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号