首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Spring peas are known to be very sensitive to compaction, particularly when sowing takes place soon after winter. Winter peas, which are sown in autumn, should present an opportunity to sow the crop in better soil structural conditions than for spring peas, because of more favourable moisture conditions at that time. As environmental conditions have a big influence on root systems, it is important to determine the effects of soil structure on pea root systems for different cultivars and sowing dates. A spring pea cultivar and a winter pea cultivar were both sown at two dates (one in autumn and one in spring) on soils with different plough-layer structures (compacted and uncompacted) at two sites in 2002 and one site in 2003. Soil structure was characterised by bulk density and the percentage of highly compacted zones in the ploughed layer. Root distribution maps were produced every month, from February to maturity. Root development was described in terms of general root dynamics, root elongation rate (RER) in the subsoil, final maximum root depth (Dmax) and root distribution at maturity. Root depth dynamics depended on compaction and its interaction with climatic conditions. The effects of compaction on RER in the subsoil depended on the experimental conditions. Dmax was reduced by 0.10 m by compaction. Compaction also reduced root distribution between 10 and 40% in the ploughed layer only. Pea cultivars differed in sensitivity to soil compaction, with a direct effect on the final depth explored by roots. These results are discussed in terms of their relevance to water and nutrient uptake.  相似文献   

2.
Soil compaction is a widespread cause of reduced plant productivity. If the effects of soil compaction on plant growth are to be reproduced in simulation models, then the processes through which compaction reduces root elongation must be expressed mathematically and then tested against experimental data. The mathematical theory by which these processes may be represented is given in the accompanying article. In this article, the behavior of a simulation model based on this theory is tested against data for root growth and soil gas concentration recorded from soil columns of which the middle layers were compacted to different bulk densities. The model was able to reproduce the failure of the root system to penetrate the compacted middle layer within the period of the experiment when bulk density exceeded 1.55 Mg m-3. The model also reproduced decreases in O2 concentrations, and increases in CO2 concentrations, in the atmospheres of the compacted layer and of the uncompacted layer below it as bulk density of the compacted layer increased. The simulated time course of O2 and nutrient uptake and of O2 concentrations in the compacted layer at different depths is presented and its consistency with experimental findings is examined. As part of a larger ecosystem model, this model will be useful in estimating site-specific effects of soil compaction on carbon cycling in agroecosystems.  相似文献   

3.
Most agricultural land has been compacted to some degree by heavy machinery or livestock trampling. This legacy is expected to influence the success of tree seedling recruits in farmland areas where natural regeneration is being encouraged. We investigated the impact of soil compaction on seedlings of a woodland eucalypt (Eucalyptus albens) and an annual grass competitor (Vulpia myuros) in a laboratory experiment. Replicate soil cores were created at five bulk density levels; 1.0, 1.1, 1.2, 1.3 or 1.4 Mg m?3 with a soil water content of 20%. The depth of root penetration declined linearly with increasing bulk density, resulting in a decrease in root depth of around 75% in the most compacted soil compared with the least compacted soil for both species. Shoot length and primary root length did not vary between soil bulk density levels for either species, but seedlings responded to increasing levels of compaction with oblique (non‐vertical) root growth. Results suggest that young seedlings of both E. albens and V. myuros will be more susceptible to surface drying in compacted than uncompacted soils and therefore face a greater risk of desiccation during the critical months following germination. Any competitive advantage that V. myuros may have over E. albens is not evident in differential response to soil compaction.  相似文献   

4.
Effect of soil compaction on root growth and uptake of phosphorus   总被引:9,自引:0,他引:9  
Summary Zea mays L. andLolium rigidum Gaud. were grown for 18 and 33 days respectively in pots containing three layers of soil each weighing 1 kg. The top and bottom layers were 100 mm deep and they had a bulk density of 1200 kg m–3, while the central layer of soil was compacted to one of 12 bulk densities between 1200 and 1750 kg m–3. The soil was labelled with32P and33P so that the contribution of the different layers of soil to the phosphorus content of the plant tops could be determined. Soil water potential was maintained between –20 and –100 kPa.Total dry weight of the plant tops and total root length were slightly affected by compaction of the soil, but root distribution was greatly altered. Compaction decreased root length in the compacted soil but increased root length in the overlying soil. Where bulk density was 1550 kg m–3, root length in the compacted soil was about 0.5 of the maximum. At that density, the penetrometer resistance of the soil was 1.25 and 5.0 MPa and air porosity was 0.05 and 0.14 at water potentials of –20 and –100 kPa respectively, and daytime oxygen concentrations in the soil atmosphere at time of harvest were about 0.1 m3m–3. Roots failed to grow completely through the compacted layer of soil at bulk densities 1550 kg m–3. No differences were detected in the abilities of the two species to penetrate compacted soil.Ryegrass absorbed about twice as much phosphorus from uncompacted soil per unit length of root as did maize. Uptake of phosphorus from each layer of soil was related to the length of root in that layer, but differences in uptake between layers existed. Phosphorus uptake per unit length of root was higher from compacted than from uncompacted soil, particularly in the case of ryegrass at bulk densities of 1300–1500 kg m–3.  相似文献   

5.
Summary Wheat crops with stunted chlorotic patches are widespread in northern Victoria, Australia, and are often associated with dense, compacted layers of soil. Poor growth of subterranean clover, with symptoms of cupped and reddened leaflets, is also a problem in these cropping regions during the pasture phase of the rotation. Artificially compacted soils were created to test the hypothesis that these symptoms of poor growth were caused by soil compaction. Soil compacted from 0–20 cm with a bulk density similar to that measured in problem fields reproduced these symptoms in wheat and subterranean clover. Surface compaction alone also reproduced the symptoms in clover.  相似文献   

6.
Wild-type (Steptoe) and abscisic acid (ABA)-deficient mutant(Az34) genotypes of barley were grown in compacted soil to examinethe potential role of ABA as a root-to-shoot signal. Root andshoot growth and leaf conductance were all reduced when plantswere grown in compacted soil with a bulk density of 1.7g cm–3,relative to uncompacted control plants (1.1 g cm–3. Theseeffects occurred in the absence of detectable changes in leafwater status or foliar abscisic acid (ABA) content. Analysisof Steptoe and Az34 xylem sap showed that the ABA concentrationwas greatly increased at 6 d after emergence (6 DAE) when seedlingswere grown in compacted soil (1.7 g cm–3); however, ABAconcentrations were never as high in the mutant as in the wildtype. The increase in xylem sap ABA concentration observed athigh bulk density was closely correlated with reductions inleaf conductance, but not leaf area. These increases were transitory,and xylem sap ABA concentrations subsequently decreased towardsthe control level by 18 DAE in both genotypes. The ABA-deficient mutant, Az34, produced a much lower leaf areathan Steptoe at a bulk density of 1.6 g cm–3. Examinationof epidermal characteristics indicates that this effect resultedmainly from reductions in cell expansion rather than cell division,suggesting that the higher ABA concentrations detected in xylemsap from the wild-type Steptoe may have exerted a positive rolein maintaining leaf expansion in this treatment. The possibleinvolvement of ABA as a root-to-shoot signal mediating the effectsof compaction stress is discussed. Key words: Soil compaction, bulk density, ABA, ABA-deficient mutant, leaf growth  相似文献   

7.
Are soils in urban ecosystems compacted? A citywide analysis   总被引:1,自引:0,他引:1  
Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.  相似文献   

8.
Soil compaction is a major disturbance associated with logging, but we lack a fundamental understanding of how this affects the soil microbiome. We assessed the structural resistance and resilience of the microbiome using a high-throughput pyrosequencing approach in differently compacted soils at two forest sites and correlated these findings with changes in soil physical properties and functions. Alterations in soil porosity after compaction strongly limited the air and water conductivity. Compaction significantly reduced abundance, increased diversity, and persistently altered the structure of the microbiota. Fungi were less resistant and resilient than bacteria; clayey soils were less resistant and resilient than sandy soils. The strongest effects were observed in soils with unfavorable moisture conditions, where air and water conductivities dropped well below 10% of their initial value. Maximum impact was observed around 6–12 months after compaction, and microbial communities showed resilience in lightly but not in severely compacted soils 4 years post disturbance. Bacteria capable of anaerobic respiration, including sulfate, sulfur, and metal reducers of the Proteobacteria and Firmicutes, were significantly associated with compacted soils. Compaction detrimentally affected ectomycorrhizal species, whereas saprobic and parasitic fungi proportionally increased in compacted soils. Structural shifts in the microbiota were accompanied by significant changes in soil processes, resulting in reduced carbon dioxide, and increased methane and nitrous oxide emissions from compacted soils. This study demonstrates that physical soil disturbance during logging induces profound and long-lasting changes in the soil microbiome and associated soil functions, raising awareness regarding sustainable management of economically driven logging operations.  相似文献   

9.
Isogenic wild-type (Ailsa Craig) and abscisic acid (ABA)-deficient mutant (flacca) genotypes of tomato were used to examine the role of root-sourced ABA in mediating growth and stomatal responses to compaction. Plants were grown in uniform soil columns providing low to moderate bulk densities (1.1–1.5 g cm?3), or in a split-pot system, which allowed the roots to divide between soils of the same or differing bulk density (1.1/1.5 g cm?3). Root and shoot growth and leaf expansion were reduced when plants were grown in compacted soil (1.5 g cm?3) but leaf water status was not altered. However, stomatal conductance was affected, suggesting that non-hydraulic signal(s) transported in the transpiration stream were responsible for the observed effects. Xylem sap and foliar ABA concentrations increased with bulk density for 10 and 15 days after emergence (DAE), respectively, but were thereafter poorly correlated with the observed growth responses. Growth was reduced to a similar extent in both genotypes in compacted soil (1.5 g cm?3), suggesting that ABA is not centrally involved in mediating growth in this severely limiting ‘critical’ compaction stress treatment. Growth performance in the 1.1/1.5 g cm?3 split-pot treatment of Ailsa Craig was intermediate between the uniform 1.1 and 1.5 g cm?3 treatments, whereas stomatal conductance was comparable to the compacted 1.5 g cm?3 treatment. In contrast, shoot dry weight and leaf area in the split-pot treatment of flacca were similar to the 1.5 g cm?3 treatment, but stomatal conductance was comparable to uncompacted control plants. These results suggest a role for root-sourced ABA in regulating growth and stomatal conductance during ‘sub-critical’ compaction stress, when genotypic differences in response are apparent. The observed genotypic differences are comparable to those previously reported for barley, but occurred at a much lower bulk density, reflecting the greater sensitivity of tomato to compaction. By alleviating the severe growth reductions induced when the entire root system encounters compacted soil, the split-pot approach has important applications for studies of the role of root-sourced signals in compaction-sensitive species such as tomato.  相似文献   

10.
杜显元  陈宏坤  黄丽  张心昱  吴骞  郭宇 《生态学报》2020,40(15):5388-5396
为研究油田外排水对干旱戈壁区人工湿地土壤微生物生物量的影响,选择干旱戈壁区某油田外排水形成的湿地内坝内、内外坝间、外坝边缘土壤,及不受排水影响的对照土壤,采用磷脂脂肪酸(PLFA)方法,分析外排水对土壤细菌、真菌、放线菌生物量的影响。结果表明:湿地内坝内、内外坝间、外坝边缘土壤与对照土壤的pH和容重均无显著差异,内外坝间的土壤含水量、电导率、溶解性全盐和全碳含量最高,显著高于内坝内土壤;除含水量外,对照土壤的主要物理性质和养分特征与湿地内坝内、内外坝间、外坝边缘的土壤无显著差异。土壤总微生物量、细菌和真菌生物量从湿地内坝内至外坝边缘逐渐增加。土壤总微生物量、细菌、真菌、放线菌与全氮含量均呈显著正相关,丛枝菌根真菌与全碳呈显著正相关,真菌、丛枝菌根真菌与总石油烃呈显著正相关。研究结果表明,油田外排水增加了湿地外坝边缘的土壤微生物量。  相似文献   

11.
Ikeda  K.  Toyota  K.  Kimura  M. 《Plant and Soil》1997,189(1):91-96
Effects of soil compaction on the microbial populations of melon and maize rhizoplane were investigated in quantity and quality. The numbers of culturable bacteria and fluorescent pseudomonads on the rhizoplane were higher when plants were grown in more compacted soil and the relative increase was larger in fluorescent pseudomonads. Total bacterial counts, however, did not appear to be affected by soil compaction, resulting in the increase in the culturable bacteria among total counts in more compacted soil. The determination of extracellular enzymatic properties (pectinase, -glucosidase, -glucosidase and -galactosidase) of each 100 isolates from bulk soil and root samples suggested that the microbial populations on the rhizoplane, especially when plants were grown in highly, compacted soil, were composed of high ratios of bacteria with abilities to utilize root exudates efficiently. The microbial community structure estimated from the colony forming curves of bulk soil and root samples suggested that the microbial populations on the rhizoplane, especially when plants were grown in compacted soil, were likely to be composed of more r-strategists which were defined as those who formed colonies within 2 days.  相似文献   

12.
为了评价华南退化人工林生态系统的不同恢复类型,本研究以土壤微生物群落功能多样性为对象,探讨恢复林土壤微生物功能多样性的差异及影响因子.在研究区内选取代表性的近自然经营杉木林(CF)和毛竹林(MB),以天然次生林(NF)为对照,采集表层土壤样品.运用Biolog-Eco微平板技术,对3种林分的土壤微生物群落功能多样性进行研究.结果表明: 不同恢复林分的植物多样性差异显著,NF植物多样性指数显著高于MB和CF,而MB的植物多样性指数显著高于CF;不同林分类型的土壤pH和容重差异显著,其他土壤理化性质差异不显著;不同林分类型土壤微生物的平均颜色变化率(AWCD)为NF>MB>CF,不同林分对6种类型碳源底物的利用也有相似规律;NF的土壤微生物群落Shannon多样性指数、Shannon丰富度指数、Simpson优势度指数和McIntosh指数最高,MB次之,CF最低;主成分分析表明,从31种碳源类型提取的主成分1和主成分2分别能解释变量方差的60.0%和12.4%,在主成分分异中起主要贡献作用的是羧酸类、碳水化合物类和氨基酸类碳源;相关性分析表明,植物物种丰富度和多样性指数、土壤容重与土壤微生物群落多样性指数之间存在显著相关关系,对土壤微生物群落功能多样性具有重要影响.NF土壤微生物的碳源利用效率高于人工林,而MB土壤微生物碳源利用效率高于CF.从植被多样性及土壤微生物群落功能多样性来看,近自然经营的MB人工林更有利于退化人工林生态系统功能的恢复与提升.  相似文献   

13.
新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性   总被引:22,自引:4,他引:18  
以南北疆不同连作年限棉花根际土壤为研究对象,采用Biolog技术,并结合传统平板培养法和土壤酶的测定,研究连作对棉花根际土壤微生物群落多样性的影响。Biolog分析结果表明,不同连作年限棉花根际土壤微生物碳源利用和功能多样性差异显著。荒地土壤微生物活性较低;在连作年限较短时(5—10a),根际土壤微生物群落的平均颜色变化率(AWCD)和Shannon指数较高;长期连作(15—20a),则呈明显下降趋势。主成分分析表明,不同连作年限的棉花根际土壤微生物碳源利用特征有明显不同。第一、二组开垦与未开垦土壤分别在PC1和PC2上出现差异,未开垦土壤得分均为负值,开垦土壤均为正值;而正茬与连作多年的棉花土壤在PC1上差异显著。其中在PC1上起分异作用的碳源主要是羧酸类和聚合物类,这两类碳源可能是影响连作棉花根际土壤微生物的主要碳源。可培养微生物数量的测定结果表明,荒地细菌数量最少;在连作年限较低时(5—10a左右),细菌数量呈上升趋势;而长期连作(>15a)后,细菌数量呈现下降趋势。真菌数量在连作多年后(10—15a)也开始增加。放线菌变化趋势不明显。四种土壤酶活性在连作的初中期(5—15a),连作障碍表现明显,土壤酶活性呈下降(过氧化氢酶和磷酸酶)或先升高后下降(脲酶和蔗糖酶)趋势,但随着连作年限的延长(15—20a),这4种土壤酶活性均表现出增高趋势。综上所述,棉花长期连作使棉花根际土壤微生物群落多样性降低,发生连作障碍,进而导致棉花产量降低。  相似文献   

14.
Pankhurst  C.E.  Pierret  A.  Hawke  B.G.  Kirby  J.M. 《Plant and Soil》2002,238(1):11-20
Some agricultural soils in South Eastern Australia with duplex profiles have subsoils with high bulk density, which may limit root penetration, water uptake and crop yield. In these soils, a large proportion (up to 80%) of plant roots maybe preferentially located within the macropores or in the soil within 1–10 mm of the macropores, a zone defined as the macropore sheath (MPS). The chemical and microbiological properties of MPS soil manually dissected from a 1–3 mm wide region surrounding the macropores was compared with that of adjacent bulk soil (>10 mm from macropores) at 4 soil depths (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm). Compared to the bulk soil, the MPS soil had higher organic C, total N, bicarbonate-extractable P, Ca+, Cu, Fe and Mn and supported higher populations of bacteria, fungi, actinomycetes, Pseudomonas spp., Bacillus spp., cellulolytic bacteria, cellulolytic fungi, nitrifying bacteria and the root pathogen Pythium.In addition, analysis of carbon substrate utilization patterns showed the microbial community associated with the MPS soil to have higher metabolic activity and greater functional diversity than the microbial community associated with the bulk soil at all soil depths. Phospholipid fatty acids associated with bacteria and fungi were also shown to be present in higher relative amounts in the MPS soil compared to the bulk soil. Whilst populations of microbial functional groups in the MPS and the bulk soil declined with increasing soil depth, the differentiation between the two soils in microbiological properties occurred at all soil depths. Soil aggregates (< 0.5 mm diameter) associated with plant roots located within macropores were found to support a microbial community that was quantitatively and functionally different to that in the MPS soil and the bulk soil at all soil depths. The microbial community associated with these soil aggregates thus represented a third recognizable environment for plant roots and microorganisms in the subsoil.  相似文献   

15.
黄土丘陵沟壑区不同植被恢复格局下土壤微生物群落结构   总被引:12,自引:4,他引:8  
胡婵娟  郭雷  刘国华 《生态学报》2014,34(11):2986-2995
针对典型黄土丘陵沟壑区陕西延安羊圈沟小流域坡面上单一刺槐林、单一撂荒草地以及林草搭配的草地-林地-草地及林地-草地-林地4种不同植被格局,利用磷脂脂肪酸(phospholipid fatty acid,PLFA)谱图分析法对土壤微生物群落结构进行监测研究,旨在揭示坡面上不同的植被恢复格局对土壤微生物群落结构的影响。研究发现4种不同植被格局下,2种林草搭配的植被格局磷脂脂肪酸的结构比较相似,与单一植被格局相比,表层土壤中表征真菌的特征脂肪酸所占的比例有所提高。主成分分析显示4种植被格局0—10 cm土壤微生物群落结构存在差异,差异主要存在于2种林草搭配的植被格局与2种单一的植被格局之间,其中草地-林地-草地的植被格局与刺槐林和撂荒草地之间土壤微生物群落结构的差异均达到了显著水平。不同微生物菌群的量在4种植被格局土壤间显著性差异主要存在于表层土壤中的细菌菌群和革兰氏阳性菌,革兰氏阴性菌和真菌在4种植被格局土壤之间无显著差异。总之,4种不同植被恢复格局的土壤微生物群落结构存在差异且差异主要存在于表层土壤,坡面上人工林的种植及林草搭配的恢复模式较直接撂荒更有利于提高微生物菌群的生物量。  相似文献   

16.
Nutrient uptake and growth of barley as affected by soil compaction   总被引:15,自引:0,他引:15  
Arvidsson  Johan 《Plant and Soil》1999,208(1):9-19
A field experiment with different levels of compaction was carried out on a mouldboard ploughed silty clay, with the objective of studying the effects on plant nutrient uptake and growth. Soil from the field was also used in laboratory studies of carbon and nitrogen mineralization, and plant uptake of water and nutrients. In the field, low as well as high bulk densities reduced biomass production and nutrient uptake of barley (Hordeum vulgare L.) compared to intermediate bulk densities, where grain yield was approximately 20% higher. In the beginning of the growing season, the concentration of phosphorus and potassium was lowest in plants grown in the loosest and in the most compacted soil, and suboptimal for plant growth. The uptake of nutrients transported by diffusion was more affected by compaction than for nutrients transported by mass flow. The reasons for lowered uptake in loose compared to moderately compacted soil could be reduced root-to-soil contact, a low diffusion coefficient for nutrients and/or reduced mass transport of water to seed and roots. Differences in plant nutrient concentrations between treatments gradually declined until harvest. Immediately after compaction there was probably oxygen deficiency in the compacted soil since the air-filled porosity was critically low, but as the soil dried out, mechanical resistance to root growth may have become a more important growth-limiting factor. In the laboratory study, severe compaction reduced carbon mineralization and uptake of water and nutrients by roots, and caused denitrification. There were only small differences between loose and moderately compacted soil in carbon mineralization, nitrogen concentration in the soil, uptake of water and nutrients and dry matter yield. The large yield increase due to recompaction in the field was not reproduced in the laboratory. Possible reasons are differences in soil temperature between the field and laboratory, in the sowing and fertilizing methods, the pretreatment of the soil and in the spatial variability of bulk density. It is possible that recompaction is needed only in the uppermost part of the soil, which is the loosest, dries out first, and is where the seed as well as the fertilizer are placed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A field experiment was conducted to evaluate the influence of root diameter on the ability of roots of eight plant species to penetrate a compacted subsoil below a tilled layer. The soil was a fine sandy loam red-brown earth with a soil strength of about 3.0 MPa (at water content of 0.13 kg kg-1, corresponding to 0.81 plastic limit) at the base of a tilled layer. Relative root diameter (RRD), which was calculated as the ratio of the mean diameters of roots of plants grown in compacted soil to the mean diameters of those from uncompacted soil, was used to compare the sensitivity of roots to thicken under mechanical stress.Diameters of root tips of plants grown in soil with a compacted layer were consistently larger than those from uncompacted soil. Tap-rooted species generally had bigger diameters and RRDs than fibrous-rooted species. A higher proportion of thicker roots penetrated the strong layer at the interface than thinner roots. There were differences between plant species in the extent to which root diameter increased in response to the compaction. The roots which had larger RRD also tended to have higher penetration percentage.The results suggest that the size of a root has a significant influence on its ability to penetrate strong soil layers. It is suggested that this could be related to the effects which root diameter may have on root growth pressure and on the mode of soil deformation during penetration.  相似文献   

18.
Species diversity and the structure of microbial communities in soils are thought to be a function of the cumulative selective pressures within the local environment. Shifts in microbial community structure, as a result of metal stress, may have lasting negative effects on soil ecosystem dynamics if critical microbial community functions are compromised. Three soils in the vicinity of a copper smelter, previously contaminated with background, low and high levels of aerially deposited metals, were amended with metal-salts to determine the potential for metal contamination to shape the structural and functional diversity of microbial communities in soils. We hypothesized that the microbial communities native to the three soils would initially be unique to each site, but would converge on a microbial community with similar structure and function, as a result of metal stress. Initially, the three different sites supported microbial communities with unique structural and functional diversity, and the nonimpacted site supported inherently higher levels of microbial activity and biomass, relative to the metal-contaminated sites. Amendment of the soils with metal-salts resulted in a decrease in microbial activity and biomass, as well as shifts in microbial community structure and function at each site. Soil microbial communities from each site were also observed to be sensitive to changes in soil pH as a result of metal-salt amendment; however, the magnitude of these pH-associated effects varied between soils. Microbial communities from each site did not converge on a structurally or functionally similar community following metal-salt amendment, indicating that other factors may be equally important in shaping microbial communities in soils. Among these factors, soil physiochemical parameters like organic matter and soil pH, which can both influence the bioavailability and toxicity of metals in soils, may be critical.  相似文献   

19.
The effects of soil compaction and mechanical damage to stools at harvesting on the growth and biomass production of short rotation coppice (SRC) of willow (Salix viminalis L.) were monitored on clay loam (CL) and sandy loam (SL) soils. Moderate compaction, more typical of current harvesting situations did not reduce biomass yields significantly. Even heavy compaction only reduced stem biomass production by about 12% overall; effects were statistically significant only in the first year of the experiment on sandy loam. Heavy compaction increased soil strength and bulk density down to 0.4 m depth and reduced soil available water and root growth locally. Soil loosening treatments designed to alleviate the effects of heavy compaction did not markedly improve the growth of willow on compacted plots. Hence the focus fell on harvesting. Extensive mechanical damage to stools caused a 9% and 21% reduction in stem dry mass on the clay loam and sandy loam soils as a result of fewer stems being produced. The particularly severe effect on the sandy loam soil probably resulted from a combination of dry conditions in the year of treatment, root damage and soil compaction under stools and might have been aggravated by the young age of the plants (1 year) at the time of treatment.  相似文献   

20.
以内蒙古克鲁伦河流域呼伦贝尔典型草原为对象,设置了轻度、中度和重度退化3种类型样地,研究不同程度退化草原的物种组成、地上生物量、土壤理化性状、土壤微生物数量和酶活性,以及微生物生物量的变化.结果表明: 中度退化样地的群落物种丰富度最大,轻度退化样地的地上生物量显著高于重度退化样地.退化样地的土壤水分、养分(有机质、全氮),微生物量碳、氮,以及微生物数量和酶活性显著下降,土壤容重显著增加.退化样地的土壤微生物生物量碳、氮在128~185和5.6~13.6 g·kg-1,土壤脱氢酶和脲酶活性均与土壤容重呈显著负相关,与土壤全氮、有机质、微生物数量以及微生物生物量碳、氮呈显著正相关,地上生物量与土壤细菌和真菌数量呈不同程度的正相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号