首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA from 61 unrelated patients with adenomatous polyposis coli (APC) was examined for mutations in three genes (DP1, SRP19, and DP2.5) located within a 100 kb region deleted in two of the patients. The intron-exon boundary sequences were defined for each of these genes, and single-strand conformation polymorphism analysis of exons from DP2.5 identified four mutations specific to APC patients. Each of two aberrant alleles contained a base substitution changing an amino acid to a stop codon in the predicted peptide; the other mutations were small deletions leading to frameshifts. Analysis of DNA from parents of one of these patients showed that his 2 bp deletion is a new mutation; furthermore, the mutation was transmitted to two of his children. These data have established that DP2.5 is the APC gene.  相似文献   

3.
Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung.  相似文献   

4.
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.  相似文献   

5.
《Journal of lipid research》2017,58(12):2348-2364
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1.  相似文献   

6.
Previous genetic studies on colorectal carcinomas (CRC) have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways) on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.  相似文献   

7.
The primary structure of the APC gene DNA was examined in 108 patients younger than 45 years old diagnosed with “familial adenomatous polyposis, classic form” using PCR, conformation-sensitive electrophoresis, and Sanger sequencing. Mutations in the APC gene were observed in 78 patients; de novo mutations were observed in 17 cases. In the majority of cases (n = 45), patients exhibited frameshift mutations, 28 patients had nonsense mutations, and other 5 patients showed splicing mutations. We also revealed recurring variants: p.Arg232X (2 cases), p.Asp849GlufsX11 (2), p.Ser1068GlyfsX57 (2), p.Arg216X (3), p.Gln1062X (5), p.Arg213X (5), and p.Glu1309AspfsX4 (16). It was shown that, compared with other pathogenic variants in the APC gene in Russian patients, mutation p.Glu1309AspfsX4 does not result in earlier development of colorectal cancer and polyps. Nineteen mutations were described for the first time. The identified mutations were located between codons 142 and 1492 of the APC gene. This indicates the importance of investigation of all the gene coding exons. Pathogenic variants were observed in 16 of 35 studied relatives of the mutation carriers. All 16 relatives were included in the “risk group” for lifelong clinical monitoring.  相似文献   

8.
We present genetic studies that help define the functional network underlying intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Our analysis shows that proteolysis, particularly that controlled by the membrane protease FtsH, is a major determinant of resistance. First, we examined the consequences of inactivating genes controlled by AmgRS, a two-component regulator required for intrinsic tobramycin resistance. Three of the gene products account for resistance: a modulator of FtsH protease (YccA), a membrane protease (HtpX), and a membrane protein of unknown function (PA5528). Second, we screened mutations inactivating 66 predicted proteases and related functions. Insertions inactivating two FtsH protease accessory factors (HflK and HflC) and a cytoplasmic protease (HslUV) increased tobramycin sensitivity. Finally, we generated an ftsH deletion mutation. The mutation dramatically increased aminoglycoside sensitivity. Many of the functions whose inactivation increased sensitivity appeared to act independently, since multiple mutations led to additive or synergistic effects. Up to 500-fold increases in tobramycin sensitivity were observed. Most of the mutations also were highly pleiotropic, increasing sensitivity to a membrane protein hybrid, several classes of antibiotics, alkaline pH, NaCl, and other compounds. We propose that the network of proteases provides robust protection from aminoglycosides and other substances through the elimination of membrane-disruptive mistranslation products.  相似文献   

9.
The first 14 exons of the APC gene have been screened by the denaturation gradient gel electrophoresis method in 160 unrelated patients with familial adenomatous polyposis coli (APC) syndrome. Four polymorphic variants corresponding to silent mutations not associated with the disease phenotype were observed. Mutations predicted to alter the coding property of the APC gene were observed in 26 patients. All these mutations are expected to lead either to aberrant splicing, to synthesis of a truncated APC protein because of the emergence of a stop codon, or to a change in the translation reading frame. Single-base-pair substitutions were observed on 21 occasions. The most frequent mutation (eight cases) was a C-to-T change which exclusively occurred on the nontranscribed strand within a CG dinucleotide.  相似文献   

10.
The APC gene is a putative human tumor-suppressor gene responsible for adenomatous polyposis coli (APC), an inherited, autosomal dominant predisposition to colon cancer. It is also implicated in the development of sporadic colorectal tumors. The characterization of APC gene mutations in APC patients is clinically important because DNA-based tests can be applied for presymptomatic diagnosis once a specific mutation has been identified in a family. Moreover, the identification of the spectrum of APC gene mutations in patients is of great interest in the study of the biological properties of the APC gene product. We analyzed the entire coding region of the APC gene by the PCR–single-strand conformation polymorphism method in 42 unrelated Italian APC patients. Mutations were found in 12 cases. These consist of small (5–14 bp) base-pair deletions leading to frameshifts; all are localized within exon 15. Two of these deletions, a 5-bp deletion at position 3183–3187 and a 5-bp deletion at position 3926–3930, are present in 3/42 and 7/42 cases of our series, respectively, indicating the presence of mutational hot spots at these two sites.  相似文献   

11.
Familial adenomatous polyposis (FAP) is a disease characterized by the presence of hundreds of adenomatous polyps in the colon and rectum which, if not treated, develop into colorectal cancer. FAP is an autosomal dominantly inherited disorder caused by mutation in the APC gene. The aim of this study was to search for germ-line mutations of the APC gene in unrelated FAP families from southern Spain. By direct sequencing of all APC gene exons, we found the mutation in 13 of 15 unrelated FAP families studied. We identified eight novel mutations: 707delA (exon6), 730_731delAG (exon7), 1787C-->G and 1946_1947insG (exon14), 2496delC, 2838_2839delAT, 2977A-->T, and 3224dupA (exon15). Two patients presented de novo germ-line mutations. Genotype-phenotype correlations for extraintestinal and extracolonic manifestations were studied. Intrafamilial phenotypic variability was observed in two families with mutations in exon/intron boundary, probably due to alternative splicing.  相似文献   

12.
13.
14.
Genotype-phenotype correlations in attenuated adenomatous polyposis coli.   总被引:16,自引:1,他引:16  
Germ-line mutations of the tumor suppressor APC are implicated in attenuated adenomatous polyposis coli (AAPC), a variant of familial adenomatous polyposis (FAP). AAPC is recognized by the occurrence of <100 colonic adenomas and a later onset of colorectal cancer (age >40 years). The aim of this study was to assess genotype-phenotype correlations in AAPC families. By protein-truncation test (PTT) assay, the entire coding region of the APC gene was screened in affected individuals from 11 AAPC kindreds, and their phenotypic differences were examined. Five novel germ-line APC mutations were identified in seven kindreds. Mutations were located in three different regions of the APC gene: (1) at the 5' end spanning exons 4 and 5, (2) within exon 9, and (3) at the 3' distal end of the gene. Variability in the number of colorectal adenomas was most apparent in individuals with mutations in region 1, and upper-gastrointestinal manifestations were more severe in them. In individuals with mutations in either region 2 or region 3, the average number of adenomas tended to be lower than those in individuals with mutations in region 1, although age at diagnosis was similar. In all AAPC kindreds, a predominance of right-sided colorectal adenomas and rectal polyp sparing was observed. No desmoid tumors were found in these kindreds. Our data suggest that, in AAPC families, the location of the APC mutation may partially predict specific phenotypic expression. This should help in the design of tailored clinical-management protocols in this subset of FAP patients.  相似文献   

15.
A feature of metazoan reproduction is the elimination of maternal centrosomes from the oocyte. In animals that form syncytial cysts during oogenesis, including Drosophila and human, all centrosomes within the cyst migrate to the oocyte where they are subsequently degenerated. The importance and the underlying mechanism of this event remain unclear. Here, we show that, during early Drosophila oogenesis, control of the Anaphase Promoting Complex/Cyclosome (APC/C), the ubiquitin ligase complex essential for cell cycle control, ensures proper transport of centrosomes into the oocyte through the regulation of Polo/Plk1 kinase, a critical regulator of the integrity and activity of the centrosome. We show that novel mutations in the APC/C-specific E2, Vihar/Ube2c, that affect its inhibitory regulation on APC/C cause precocious Polo degradation and impedes centrosome transport, through destabilization of centrosomes. The failure of centrosome migration correlates with weakened microtubule polarization in the cyst and allows ectopic microtubule nucleation in nurse cells, leading to the loss of oocyte identity. These results suggest a role for centrosome migration in oocyte fate maintenance through the concentration and confinement of microtubule nucleation activity into the oocyte. Considering the conserved roles of APC/C and Polo throughout the animal kingdom, our findings may be translated into other animals.  相似文献   

16.
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessively inherited disorders characterized by impaired production of adrenal steroids. Approximately 95% of all CAH are caused by mutations of the CYP21A2 that encodes 21-hydroxylase. In this study, mutation analyses of CYP21A2 were performed in 48 CAH patients from 45 Turkish families with the clinical diagnosis of 21-hydroxylase deficiency (21OHD). While in 39 (86.7%) of 21OHD patients, disease causing CYP21A2 mutations were identified in both alleles, in two 21OHD patients CYP21A2 mutations were identified only in one allele. In four patients, mutation was not detected at all. In total, seventeen known and one novel, disease causing CYP21A2 mutations were observed. Among identified mutations, previously described c.293-13C/A>G, large rearrangements and p.Q319X mutations were the most common mutations accounting for 33.3%, 14.4% and 12.2% of all evaluated chromosomes, respectively. In six families (13.3%) a novel founder mutation, c.2T>C (p.M1?), inactivating the translation initiation codon was found. This mutation is not present in pseudogene CYP21A1P and causes the classical form of the disease in six patients. In addition, depending on the nature of the rearrangements CYP21A1P/CYP21A2 chimeras were further classified as CHc/d, and CH-1c was shown to be the most prominent chimera in our study group. In conclusion, with this study we identified a novel founder CYP21A2 mutation and suggest a further classification for CYP21A1P/CYP21A2 chimeras depending on the combination of junction site position and whether it is occurred as a result of deletion or conversion. Absence of disease causing mutation of CYP21A2 in ten of screened ninety chromosomes suggests the contribution of regulatory elements in occurrences of CAH due to the 21OHD.  相似文献   

17.
Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are linked to both familial and sporadic human colon cancer. So far, a clear biological function for the APC gene product has not been determined. We assayed the activity of APC in the early Xenopus embryo, which has been established as a good model for the analysis of the signaling activity of the APC-associated protein β-catenin. When expressed in the future ventral side of a four-cell embryo, full-length APC induced a secondary dorsoanterior axis and the induction of the homeobox gene Siamois. This is similar to the phenotype previously observed for ectopic β-catenin expression. In fact, axis induction by APC required the availability of cytosolic β-catenin. These results indicate that APC has signaling activity in the early Xenopus embryo. Signaling activity resides in the central domain of the protein, a part of the molecule that is missing in most of the truncating APC mutations in colon cancer. Signaling by APC in Xenopus embryos is not accompanied by detectable changes in expression levels of β-catenin, indicating that it has direct positive signaling activity in addition to its role in β-catenin turnover. From these results we propose a model in which APC acts as part of the Wnt/β-catenin signaling pathway, either upstream of, or in conjunction with, β-catenin.  相似文献   

18.
Most colorectal cancers have mutations of the adenomatous polyposis coli (APC) gene or the beta-catenin gene that stabilize beta-catenin and activate beta-catenin target genes, leading ultimately to cancer. The molecular mechanisms of APC function in beta-catenin degradation are not completely known. APC binds beta-catenin and is involved in the Axin complex, suggesting that APC regulates beta-catenin phosphorylation. Some evidence also suggests that APC regulates beta-catenin nuclear export. Here, we examine the effects of APC mutations on beta-catenin phosphorylation, ubiquitination, and degradation in the colon cancer cell lines SW480, DLD-1, and HT29, each of which contains a different APC truncation. Although the current models suggest that beta-catenin phosphorylation should be inhibited by APC mutations, we detected significant beta-catenin phosphorylation in these cells. However, beta-catenin ubiquitination and degradation were inhibited in SW480 but not in DLD-1 and HT29 cells. The ubiquitination ofbeta-catenin in SW480 cells can be rescued by exogenous expression of APC. The APC domains required for beta-catenin ubiquitination were analyzed. Our results suggest that APC regulates beta-catenin phosphorylation and ubiquitination by distinct domains and by separate molecular mechanisms.  相似文献   

19.
The anaphase-promoting complex (APC) is a ubiquitin ligase that controls progression through mitosis by targeting specific proteins for degradation. It is unclear whether the APC also contributes to the control of cytokinesis, the process that divides the cell after mitosis. We addressed this question in the yeast Saccharomyces cerevisiae by studying the effects of APC mutations on the actomyosin ring, a structure containing actin, myosin, and several other proteins that forms at the division site and is important for cytokinesis. In wild-type cells, actomyosin-ring constituents are removed progressively from the ring during contraction and disassembled completely thereafter. In cells lacking the APC activator Cdh1, the actomyosin ring contracts at a normal rate, but ring constituents are not disassembled normally during or after contraction. After cytokinesis in mutant cells, aggregates of ring proteins remain at the division site and at additional foci in other parts of the cell. A key target of APCCdh1 is the ring component Iqg1, the destruction of which contributes to actomyosin-ring disassembly. Deletion of CDH1 also exacerbates actomyosin-ring disassembly defects in cells with mutations in the myosin light-chain Mlc2, suggesting that Mlc2 and the APC employ independent mechanisms to promote ring disassembly during cytokinesis.  相似文献   

20.
The hearing loss caused by GJB2 mutations is usually congenital in onset, moderate to profound in degree, and non-progressive. The objective of this study was to study genotype/phenotype correlations and to document 14 children with biallelic GJB2 mutations who passed newborn hearing screening (NHS). Genetic testing for GJB2 mutations by direct sequencing was performed on 924 individuals (810 families) with hearing loss, and 204 patients (175 families) were found to carry biallelic GJB2 mutations. NHS results were obtained through medical records. A total of 18 pathological mutations were identified, which were subclassified as eight inactivating and 10 non-inactivating mutations. p.I128M and p.H73Y were identified as novel missense GJB2 mutations. Of the 14 children with biallelic GJB2 mutations who passed NHS, eight were compound heterozygotes and 3 were homozygous for the c.235delC mutation in GJB2, and the other three combinations of non-c.235delC mutations identified were p.Y136X-p.G45E/p.V37I heterozygous, c.512ins4/p.R143W heterozygous, and p.V37I/p.R143W heterozygous. These 14 cases demonstrate that the current NHS does not identify all infants with biallelic GJB2 mutations. They suggest that the frequency of non-penetrance at birth is approximately 6.9% or higher in DFNB1 patients and provide further evidence that GJB2 hearing loss may not always be congenital in onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号