首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response.  相似文献   

2.
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience.  相似文献   

3.
Repeated stimulus causes a specific suppression of neuronal responses, which is so-called as Stimulus-Specific Adaptation (SSA). This effect can be recovered when the stimulus changes. In the auditory system SSA is a well-known phenomenon that appears at different levels of the mammalian auditory pathway. In this study, we explored the effects of adaptation to a particular stimulus on the auditory tuning curves of anesthetized rats. We used two sequences and compared the responses of each tone combination in these two conditions. First sequence consists of different pure tone combinations that were presented randomly. In the second one, the same stimuli of the first sequence were presented in the context of an adapted stimulus (adapter) that occupied 80% of sequence probability. The population results demonstrated that the adaptation factor decreased the frequency response area and made a change in the tuning curve to shift it unevenly toward the higher thresholds of tones. The local field potentials and multi-unit activity responses have indicated that the neural activities strength of the adapted frequency has been suppressed as well as with lower suppression in neighboring frequencies. This aforementioned reduction changed the characteristic frequency of the tuning curve.  相似文献   

4.
The specific adaptation of neuronal responses to a repeated stimulus (Stimulus-specific adaptation, SSA), which does not fully generalize to other stimuli, provides a mechanism for emphasizing rare and potentially interesting sensory events. Previous studies have demonstrated that neurons in the auditory cortex and inferior colliculus show SSA. However, the contribution of the medial geniculate body (MGB) and its main subdivisions to SSA and detection of rare sounds remains poorly characterized. We recorded from single neurons in the MGB of anaesthetized rats while presenting a sequence composed of a rare tone presented in the context of a common tone (oddball sequences). We demonstrate that a significant percentage of neurons in MGB adapt in a stimulus-specific manner. Neurons in the medial and dorsal subdivisions showed the strongest SSA, linking this property to the non-lemniscal pathway. Some neurons in the non-lemniscal regions showed strong SSA even under extreme testing conditions (e.g., a frequency interval of 0.14 octaves combined with a stimulus onset asynchrony of 2000 ms). Some of these neurons were able to discriminate between two very close frequencies (frequency interval of 0.057 octaves), revealing evidence of hyperacuity in neurons at a subcortical level. Thus, SSA is expressed strongly in the rat auditory thalamus and contribute significantly to auditory change detection.  相似文献   

5.
Preston CR  Engels W  Flores C 《Genetics》2002,161(2):711-720
We show evidence that DNA double-strand breaks induced in the Drosophila germ line can be repaired very efficiently by the single-strand annealing (SSA) mechanism. A double-strand break was made between two copies of a 1290-bp direct repeat by mobilizing a P transposon. In >80% of the progeny that acquired this chromosome, repair resulted in loss of the P element and loss of one copy of the repeat, as observed in SSA. The frequency of this repair was much greater than seen for gene conversion using an allelic template, which is only approximately 7%. A similar structure, but with a smaller duplication of only 158 bp, also yielded SSA-like repair events, but at a reduced frequency, and gave rise to some products by repair pathways other than SSA. The 1290-bp repeats carried two sequence polymorphisms that were examined in the products. The allele nearest to a nick in the putative heteroduplex intermediate was lost most often. This bias is predicted by the SSA model, although other models could account for it. We conclude that SSA is the preferred repair pathway in Drosophila for DNA breaks between sequence repeats, and it competes with gene conversion by the synthesis-dependent strand annealing (SDSA) pathway.  相似文献   

6.
Taaseh N  Yaron A  Nelken I 《PloS one》2011,6(8):e23369
Stimulus-specific adaptation (SSA) is the specific decrease in the response to a frequent ('standard') stimulus, which does not generalize, or generalizes only partially, to another, rare stimulus ('deviant'). Stimulus-specific adaptation could result simply from the depression of the responses to the standard. Alternatively, there may be an increase in the responses to the deviant stimulus due to the violation of expectations set by the standard, indicating the presence of true deviance detection. We studied SSA in the auditory cortex of halothane-anesthetized rats, recording local field potentials and multi-unit activity. We tested the responses to pure tones of one frequency when embedded in sequences that differed from each other in the frequency and probability of the tones composing them. The responses to tones of the same frequency were larger when deviant than when standard, even with inter-stimulus time intervals of almost 2 seconds. Thus, SSA is present and strong in rat auditory cortex. SSA was present even when the frequency difference between deviants and standards was as small as 10%, substantially smaller than the typical width of cortical tuning curves, revealing hyper-resolution in frequency. Strong responses were evoked also by a rare tone presented by itself, and by rare tones presented as part of a sequence of many widely spaced frequencies. On the other hand, when presented within a sequence of narrowly spaced frequencies, the responses to a tone, even when rare, were smaller. A model of SSA that included only adaptation of the responses in narrow frequency channels predicted responses to the deviants that were substantially smaller than the observed ones. Thus, the response to a deviant is at least partially due to the change it represents relative to the regularity set by the standard tone, indicating the presence of true deviance detection in rat auditory cortex.  相似文献   

7.
Tomso DJ  Kreuzer KN 《Genetics》2000,155(4):1493-1504
Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the genetic analysis of break repair. SSA occurs readily in broken plasmid DNA and is independent of the strand exchange protein UvsX and its accessory factor UvsY. We use the unique features of T4 DNA metabolism to examine the link between SSA repair and DNA replication and demonstrate directly that the DNA polymerase and the major replicative helicase of the phage are not required for SSA repair. We also show that the Escherichia coli RecBCD enzyme can mediate the degradation of broken DNA during early, but not late, times of infection. Finally, we consider the status of broken ends during the course of the infection and propose a model for SSA during T4 infections.  相似文献   

8.
Mismatch Negativity (MMN) is an N-methyl-d-aspartic acid (NMDA)-mediated, negative deflection in human auditory evoked potentials in response to a cognitively discriminable change. MMN-like responses have been extensively investigated in animal models, but the existence of MMN equivalent is still controversial. In this study, we aimed to investigate how closely the putative MMN (MMNp) in rats exhibited the comparable properties of human MMN. We used a surface microelectrode array with a grid of 10×7 recording sites within an area of 4.5×3.0 mm to densely map evoked potentials in the auditory cortex of anesthetized rats under the oddball paradigm. Firstly, like human MMN, deviant stimuli elicited negative deflections in auditory evoked potentials following the positive middle-latency response, termed P1. Secondly, MMNp exhibited deviance-detecting property, which could not be explained by simple stimulus specific adaptation (SSA). Thirdly, this MMNp occurred focally in the auditory cortex, including both the core and belt regions, while P1 activation focus was obtained in the core region, indicating that both P1 and MMNp are generated in the auditory cortex, yet the sources of these signals do not completely overlap. Fourthly, MMNp significantly decreased after the application of AP5 (D-(-)-2-amino-5-phosphonopentanoic acid), an antagonist at NMDA receptors. In stark contrast, AP5 affected neither P1 amplitude nor SSA of P1. These results provide compelling evidence that the MMNp we have examined in rats is functionally comparable to human MMN. The present work will stimulate translational research into MMN, which may help bridge the gap between electroencephalography (EEG)/magnetoencephalography (MEG) studies in humans and electrophysiological studies in animals.  相似文献   

9.
The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechanism of SSA are currently unknown. We used microiontophoretic application of gabazine to examine the role of GABA(A)-mediated inhibition in SSA in the inferior colliculus, the midbrain center for auditory processing. We found that gabazine slowed down the process of adaptation to high probability stimuli but did not abolish it, with response magnitude and latency still depending on the probability of the stimulus. Blocking GABA(A) receptors increased the firing rate to high and low probability stimuli, but did not completely equalize the responses. Together, these findings suggest that GABA(A)-mediated inhibition acts as a gain control mechanism that enhances SSA by modifying the responsiveness of the neuron.  相似文献   

10.
Streptococcal superantigen (SSA) is a 28,000 Mr toxin originally isolated from a pathogenic strain of Streptococcus pyogenes that has 60% sequence identity with staphylococcal enterotoxin B (SEB). SSA and SEB, however, do not compete for binding on the surfaces of cells expressing MHC class II molecules. This behavior had been ascribed to SSA and SEB binding to distinct sites on, or different subsets of, HLA-DR molecules. Here we demonstrate that SSA binds predominantly to HLA-DQ, rather than to HLA-DR molecules, and present the crystal structure of SSA at 1.85 A resolution. These data provide a structural basis for interpreting the interaction of SSA with HLA-DQ molecules as well as a foundation for understanding bacterial superantigen affinities for distinct MHC isotypes.  相似文献   

11.
While the Green Revolution has been successful in some regions like South and East Asia, it could hardly address any achievement in Sub-Saharan Africa (SSA). This paper tries to draw a picture on lessons learned from the failures of this revolution that should be taken into account before implementing the so-called Gene Revolution in the SSA region. After scrutinizing the failures and the pros and cons of GM crops in the region, the paper introduces some potentials for improving the malnutrition situation in SSA through launching a successful GM technology. However, it remains doubtful whether this technology can improve the situation of small-scale farmers as long as they receive no financial support from their national governments. Therefore, before any intervention, the socio-economic and environmental impacts of GM technology need to be carefully addressed in the framework of a series of risk assessment studies. Besides, some sort of multi-stakeholder dialog (from small-scale farmers to consumers) involving public–private sector and non-governmental organizations should be heated up at both national and regional levels with regard to the myths and truths of this technology.  相似文献   

12.
The nature of the neural codes for pitch and loudness, two basic auditory attributes, has been a key question in neuroscience for over century. A currently widespread view is that sound intensity (subjectively, loudness) is encoded in spike rates, whereas sound frequency (subjectively, pitch) is encoded in precise spike timing. Here, using information-theoretic analyses, we show that the spike rates of a population of virtual neural units with frequency-tuning and spike-count correlation characteristics similar to those measured in the primary auditory cortex of primates, contain sufficient statistical information to account for the smallest frequency-discrimination thresholds measured in human listeners. The same population, and the same spike-rate code, can also account for the intensity-discrimination thresholds of humans. These results demonstrate the viability of a unified rate-based cortical population code for both sound frequency (pitch) and sound intensity (loudness), and thus suggest a resolution to a long-standing puzzle in auditory neuroscience.  相似文献   

13.
Rogers W  Ballantyne A  Draper H 《Bioethics》2007,21(9):520-524
In this paper we argue that sex-selective abortion (SSA) cannot be morally justified and that it should be prohibited. We present two main arguments against SSA. First, we present reasons why the decision for a woman to seek SSA in cultures with strong son-preference cannot be regarded as autonomous on either a narrow or a broad account of autonomy. Second, we identify serious harms associated with SSA including perpetuation of discrimination against women, disruption to social and familial networks, and increased violence against women. For these reasons, SSA should be prohibited by law, and such laws should be enforced. Finally, we describe additional strategies for decreasing son-preference. Some of these strategies rely upon highlighting the disadvantages of women becoming scarce, such as lack of brides and daughters-in-law to care for elderly parents. We should, however, be cautious not to perpetuate the view that the purpose of women is to be the consorts for, and carers of, men, and the providers of children. Arguments against SSA should be located within a concerted effort to ensure greater, deeper social and cultural equality between the sexes.  相似文献   

14.
Current knowledge of sensory processing in the mammalian auditory system is mainly derived from electrophysiological studies in a variety of animal models, including monkeys, ferrets, bats, rodents, and cats. In order to draw suitable parallels between human and animal models of auditory function, it is important to establish a bridge between human functional imaging studies and animal electrophysiological studies. Functional magnetic resonance imaging (fMRI) is an established, minimally invasive method of measuring broad patterns of hemodynamic activity across different regions of the cerebral cortex. This technique is widely used to probe sensory function in the human brain, is a useful tool in linking studies of auditory processing in both humans and animals and has been successfully used to investigate auditory function in monkeys and rodents. The following protocol describes an experimental procedure for investigating auditory function in anesthetized adult cats by measuring stimulus-evoked hemodynamic changes in auditory cortex using fMRI. This method facilitates comparison of the hemodynamic responses across different models of auditory function thus leading to a better understanding of species-independent features of the mammalian auditory cortex.  相似文献   

15.
The pathophysiology of auditory hallucination, a common symptom of schizophrenia, has yet been understood, but during auditory hallucination, primary auditory cortex (A1) shows paradoxical responses. When auditory stimuli are absent, A1 becomes hyperactive, while A1 responses to auditory stimuli are reduced. Such activation pattern of A1 responses during auditory hallucination is consistent with aberrant gamma rhythms in schizophrenia observed during auditory tasks, raising the possibility that the pathology underlying abnormal gamma rhythms can account for auditory hallucination. Moreover, A1 receives top-down signals in the gamma frequency band from an adjacent association area (Par2), and cholinergic modulation regulates interactions between A1 and Par2. In this study, we utilized a computational model of A1 to ask if disrupted cholinergic modulation could underlie abnormal gamma rhythms in schizophrenia. Furthermore, based on our simulation results, we propose potential pathology by which A1 can directly contribute to auditory hallucination.  相似文献   

16.
The detection of novel signals in the auditory scene is an elementary task of any hearing system. In Neoconocephalus katydids, a primary auditory interneuron (TN-1) with broad spectral sensitivity, responded preferentially to rare deviant pulses (7 pulses/s repetition rate) embedded among common standard pulses (140 pulses/s repetition rate). Eliminating inhibitory input did not affect the detection of the deviant pulses. Detection thresholds for deviant pulses increased significantly with increasing amplitude of standard pulses. Responses to deviant pulses occurred when the carrier frequencies of deviant and standard were sufficiently different, both when the deviant had a higher or lower carrier frequency than the standard. Recordings from receptor neurons revealed that TN-1 responses to the deviant pulses did not depend on the population response strength of the receptors, but on the distribution of the receptor cell activity. TN-1 responses to the deviant pulse occurred only when the standard and deviant pulses were transmitted by different groups of receptor cells. TN-1 responses parallel stimulus specific adaptation (SSA) described in mammalian auditory system. The results support the hypothesis that the mechanisms underlying SSA and change-detection are located in the TN-1 dendrite, rather than the receptor cells.  相似文献   

17.
Wilson TE 《Genetics》2002,162(2):677-688
We recently described a yeast assay suitable for genetic screening in which simple religation nonhomologous end-joining (NHEJ) and single-strand annealing (SSA) compete for repair of an I-SceI-created double-strand break. Here, the required allele has been introduced into an array of 4781 MATa deletion mutants and each strain screened individually. Two mutants (rad52 and srs2) showed a clear increase in the NHEJ/SSA ratio due to preferential impairment of SSA, but no mutant increased the absolute frequency of NHEJ significantly above the wild-type level. Seven mutants showed a decreased NHEJ/SSA ratio due to frank loss of NHEJ, which corresponded to all known structural/catalytic NHEJ components (yku70, yku80, dnl4, lif1, rad50, mre11, and xrs2); no new mutants in this category were identified. A clearly separable and surprisingly large set of 16 other mutants showed partial defects in NHEJ. Further examination of these revealed that NEJ1 can entirely account for the mating-type regulation of NHEJ, but that this regulatory role was distinct from the postdiauxic/stationary-phase induction of NHEJ that was deficient in other mutants (especially doa1, fyv6, and mck1). These results are discussed in the context of the minimal set of required proteins and regulatory inputs for NHEJ.  相似文献   

18.
Following earlier studies which showed that a sparse coding principle may explain the receptive field properties of complex cells in primary visual cortex, it has been concluded that the same properties may be equally derived from a slowness principle. In contrast to this claim, we here show that slowness and sparsity drive the representations towards substantially different receptive field properties. To do so, we present complete sets of basis functions learned with slow subspace analysis (SSA) in case of natural movies as well as translations, rotations, and scalings of natural images. SSA directly parallels independent subspace analysis (ISA) with the only difference that SSA maximizes slowness instead of sparsity. We find a large discrepancy between the filter shapes learned with SSA and ISA. We argue that SSA can be understood as a generalization of the Fourier transform where the power spectrum corresponds to the maximally slow subspace energies in SSA. Finally, we investigate the trade-off between slowness and sparseness when combined in one objective function.  相似文献   

19.
Tsai CY  Wu TH  Yu CL  Chou CT 《Life sciences》2000,67(10):1149-1161
Sulfasalazine (SSA) was investigated for its effects on phagocytic activity of normal human polymorphonuclear neutrophils (PMN), proliferation of mononuclear cells (MNC) and cultured glomerular mesangial cells. At concentrations from 25 to 100 microM, it inhibited phagocytic activity of PMN and the 3H-thymidine incorporation of phytohemagglutinin (PHA)-stimulated human MNC in a dose-dependent manner. At comparable concentrations, sulfapyridine and 5-aminosalicylic acid, two of its major metabolites, did not show similar effects. SSA exhibited an inhibitory effect on both mouse and rat mesangial cells but at rather higher concentrations (0.5 mM). Excretion of interleukin (IL)-8 by lipopolysaccharide (LPS)-stimulated PMN was also markedly deterred in a dose-dependent manner but excretion of IL-8 by LPS-stimulated MNC was not interfered by SSA. Production of tumor necrosis factor (TNF)-alpha and IL-1beta by mouse mesangial cells was not blocked by SSA but production of IL-4 by these cells was inhibited by it (>0.1 mM). Inhibition of MNC was not due directly to cytotoxic effect of SSA on these cells as shown by fluorescein diacetate stain. Collectively, SSA inhibits phagocytosis and IL-8 excretion by PMN as well as mitogen-stimulated MNC reaction. On the other hand, at high concentrations, it inhibits glomerular mesangial cells and their IL-4 excretion but not TNF-alpha and IL-1beta excretion. These results can account for minimal nephrotoxic characteristic of SSA and suggest that it may be helpful in the treatment of immune-mediated glomerulonephritis.  相似文献   

20.
This study reports a combined scalp current density (SCD) and dipole model analysis of the N1 wave of the auditory event-related potentials evoked by 1 kHz tone bursts delivered every second. The SCD distributions revealed: (i) a sink and a source of current reversing in polarity at the inferotemporal level of each hemiscalp, compatible with neural generators in and around the supratemporal plane of the auditory cortex, as previously reported; and (ii) bilateral current sinks over frontal areas. Consistently, dynamic dipole model analysis showed that generators in and outside the auditory cortex are necessary to account for the observed current fields between 65 and 140 msec post stimulus. The frontal currents could originate from the motor cortex, the supplementary motor area and/or the cingulate gyrus. The dissociation of an exogenous, obligatory frontal component from the sensory-specific response in the auditory N1 suggests that parallel processes served by distinct neural systems are activated during acoustic stimulation. Implications for recent models of auditory processing are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号