首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.  相似文献   

2.
The Aer protein in Escherichia coli is a membrane-bound, FAD-containing aerotaxis and energy sensor that putatively monitors the redox state of the electron transport system. Binding of FAD to Aer requires the N-terminal PAS domain and residues in the F1 region and C-terminal HAMP domain. The PAS domains of other PAS proteins are soluble in water. To investigate properties of the PAS domain, we subcloned segments of the aer gene from E. coli that encode the PAS domain with and without His6 tags and expressed the PAS peptides in E. coli. The 20-kDa His6-Aer2-166 PAS-F1 fragment was purified as an 800-kDa complex by gel filtration chromatography, and the associating protein was identified by N-terminal sequencing as the chaperone protein GroEL. None of the N-terminal fragments of Aer found in the soluble fraction was released from GroEL, suggesting that these peptides do not fold correctly in an aqueous environment and require a motif external to the PAS domain for proper folding. Consistent with this model, peptide fragments that included the membrane binding region and part (Aer2-231) or all (Aer2-285) of the HAMP domain inserted into the membrane, indicating that they were released by GroEL. Aer2-285, but not Aer2-231, bound FAD, confirming the requirement for the HAMP domain in stabilizing FAD binding. The results raise an interesting possibility that residues outside the PAS domain that are required for FAD binding are essential for formation of the PAS native fold.  相似文献   

3.
Aer, the Escherichia coli aerotaxis receptor, faces the cytoplasm, where the PAS (Per-ARNT-Sim)-flavin adenine dinucleotide (FAD) domain senses redox changes in the electron transport system or cytoplasm. PAS-FAD interacts with a HAMP (histidine kinase, adenylyl cyclase, methyl-accepting protein, and phosphatase) domain to form an input-output module for Aer signaling. In this study, the structure of the Aer HAMP and proximal signaling domains was probed to elucidate structure-function relationships important for signaling. Aer residues 210 to 290 were individually replaced with cysteine and then cross-linked in vivo. The results confirmed that the Aer HAMP domain is composed of two α-helices separated by a structured loop. The proximal signaling domain consisted of two α-helices separated by a short undetermined structure. The Af1503 HAMP domain from Archaeoglobus fulgidus was recently shown to be a four-helix bundle. To test whether the Af1503 HAMP domain is a prototype for the Aer HAMP domain, the latter was modeled using coordinates from Af1503. Several findings supported the hypothesis that Aer has a four-helix HAMP structure: (i) cross-linking independently identified the same residues at the dimer interface that were predicted by the model, (ii) the rate of cross-linking for residue pairs was inversely proportional to the β-carbon distances measured on the model, and (iii) clockwise lesions that were not contiguous in the linear Aer sequence were clustered in one region in the folded HAMP model, defining a potential site of PAS-HAMP interaction during signaling. In silico modeling of mutant Aer proteins indicated that the four-helix HAMP structure was important for Aer stability or maturation. The significance of the HAMP and proximal signaling domain structure for signal transduction is discussed.  相似文献   

4.
Minimal requirements for oxygen sensing by the aerotaxis receptor Aer   总被引:6,自引:2,他引:4  
The PAS and HAMP domain superfamilies are signal transduction modules found in all kingdoms of life. The Aer receptor, which contains both domains, initiates rapid behavioural responses to oxygen (aerotaxis) and other electron acceptors, guiding Escherichia coli to niches where it can generate optimal cellular energy. We used intragenic complementation to investigate the signal transduction pathway from the Aer PAS domain to the signalling domain. These studies showed that the HAMP domain of one monomer in the Aer dimer stabilized FAD binding to the PAS domain of the cognate monomer. In contrast, the signal transduction pathway was intra-subunit, involving the PAS and signalling domains from the same monomer. The minimal requirements for signalling were investigated in heterodimers containing a full-length and truncated monomer. Either the PAS or signalling domains could be deleted from the non-signalling subunit of the heterodimer, but removing 16 residues from the C-terminus of the signalling subunit abolished aerotaxis. Although both HAMP domains were required for aerotaxis, signalling was not disrupted by missense mutations in the HAMP domain from the signalling subunit. Possible models for Aer signal transduction are compared.  相似文献   

5.
The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer‐PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N‐terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase‐off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS‐HAMP surfaces overlapped with a cluster of PAS kinase‐on lesions and with cysteine substitutions that crosslinked the PAS β ‐scaffold to the HAMP AS‐2 helix. A refined Aer PAS‐HAMP interaction model is presented. Compared to the kinase‐off state, the kinase‐on state increased the accessibility of HAMP residues (apparently relaxing PAS‐HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static‐dynamic model in which oxidized Aer‐PAS interacts directly with HAMP AS‐2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase‐off output. When PAS‐FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase‐on output.  相似文献   

6.
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.  相似文献   

7.
Escherichia coli chemoreceptors are type I membrane receptors that have a periplasmic sensing domain, a cytosolic signaling domain, and two transmembrane segments. The aerotaxis receptor, Aer, is different in that both its sensing and signaling regions are proposed to be cytosolic. This receptor has a 38-residue hydrophobic segment that is thought to form a membrane anchor. Most transmembrane prediction programs predict a single transmembrane-spanning segment, but such a topology is inconsistent with recent studies indicating that there is direct communication between the membrane flanking PAS and HAMP domains. We studied the overall topology and membrane boundaries of the Aer membrane anchor by a cysteine-scanning approach. The proximity of 48 cognate cysteine replacements in Aer dimers was determined in vivo by measuring the rate and extent of disulfide cross-linking after adding the oxidant copper phenanthroline, both at room temperature and to decrease lateral diffusion in the membrane, at 4 degrees C. Membrane boundaries were identified in membrane vesicles using 5-iodoacetamidofluorescein and methoxy polyethylene glycol 5000 (mPEG). To map periplasmic residues, accessible cysteines were blocked in whole cells by pretreatment with 4-acetamido-4'-maleimidylstilbene-2, 2' disulfonic acid before the cells were lysed in the presence of mPEG. The data were consistent with two membrane-spanning segments, separated by a short periplasmic loop. Although the membrane anchor contains a central proline residue that reaches the periplasm, its position was permissive to several amino acid and peptide replacements.  相似文献   

8.
PAS domains sense oxygen, redox potential and light, and are implicated in behaviour, circadian rhythmicity, development and metabolic regulation. Although PAS domains are widespread in archaea, bacteria and eukaryota, the mechanism of signal transduction has been elucidated only for the bacterial photo sensor PYP and oxygen sensor FixL. We investigated the signalling mechanism in the PAS domain of Aer, the redox potential sensor and aerotaxis transducer in Escherichia coli. Forty-two residues in Aer were substituted using cysteine-replacement mutagenesis. Eight mutations resulted in a null phenotype for aerotaxis, the behavioural response to oxygen. Four of them also led to the loss of the non-covalently bound FAD cofactor. Three mutant Aer proteins, N34C, F66C and N85C, transmitted a constant signal-on bias. One mutation, Y111C, inverted signalling by the transducer so that positive stimuli produced negative signals and vice versa. Residues critical for signalling were mapped onto a three-dimensional model of the Aer PAS domain, and an FAD-binding site and 'active site' for signal transduction are proposed.  相似文献   

9.
A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.  相似文献   

10.
In this study a series of N- and/or C-terminal truncations of the cytoplasmic domain of the b subunit of the Escherichia coli F(1)F(0) ATP synthase were tested for their ability to form dimers using sedimentation equilibrium ultracentrifugation. The deletion of residues between positions 53 and 122 resulted in a strongly decreased tendency to form dimers, whereas all the polypeptides that included that sequence exhibited high levels of dimer formation. b dimers existed in a reversible monomer-dimer equilibrium and when mixed with other b truncations formed heterodimers efficiently, provided both constructs included the 53-122 sequence. Sedimentation velocity and (15)N NMR relaxation measurements indicated that the dimerization region is highly extended in solution, consistent with an elongated second stalk structure. A cysteine introduced at position 105 was found to readily form intersubunit disulfides, whereas other single cysteines at positions 103-110 failed to form disulfides either with the identical mutant or when mixed with the other 103-110 cysteine mutants. These studies establish that the b subunit dimer depends on interactions that occur between residues in the 53-122 sequence and that the two subunits are oriented in a highly specific manner at the dimer interface.  相似文献   

11.
The Aer receptor guides Escherichia coli to specific oxygen and energy-generating niches. The input sensor in Aer is a flavin adenine dinucleotide-binding PAS domain, which is separated from a HAMP/signaling output domain by two membrane-spanning segments that flank a short (four-amino-acid) periplasmic loop. In this study, we determined the overall membrane organization of Aer by introducing combinations of residues that allowed us to differentiate intradimeric collisions from interdimeric collisions. Collisions between proximal residues in the membrane anchor were exclusively intra- or interdimeric but, with one exception, not both. Cross-linking profiles were consistent, with a rigid rather than flexible periplasmic loop and a tilted TM2 helix that crossed TM2' at residue V197C, near the center of the lipid bilayer. The periplasmic loop formed a stable neighborhood that (i) included a maximum of three Aer dimers, (ii) did not swap neighbors over time, and (iii) appeared to be constrained by interactions in the cytosolic signaling domain.  相似文献   

12.
The structure of the N-terminal transmembrane domain (residues 1-34) of subunit b of the Escherichia coli F0F1-ATP synthase has been solved by two-dimensional 1H NMR in a membrane mimetic solvent mixture of chloroform/methanol/H2O (4:4:1). Residues 4-22 form an alpha-helix, which is likely to span the hydrophobic domain of the lipid bilayer to anchor the largely hydrophilic subunit b in the membrane. The helical structure is interrupted by a rigid bend in the region of residues 23-26 with alpha-helical structure resuming at Pro-27 at an angle offset by 20 degrees from the transmembrane helix. In native subunit b, the hinge region and C-terminal alpha-helical segment would connect the transmembrane helix to the cytoplasmic domain. The transmembrane domains of the two subunit b in F0 were shown to be close to each other by cross-linking experiments in which single Cys were substituted for residues 2-21 of the native subunit and b-b dimer formation tested after oxidation with Cu(II)(phenanthroline)2. Cys residues that formed disulfide cross-links were found with a periodicity indicative of one face of an alpha-helix, over the span of residues 2-18, where Cys at positions 2, 6, and 10 formed dimers in highest yield. A model for the dimer is presented based upon the NMR structure and distance constraints from the cross-linking data. The transmembrane alpha-helices are positioned at a 23 degrees angle to each other with the side chains of Thr-6, Gln-10, Phe-14, and Phe-17 at the interface between subunits. The change in direction of helical packing at the hinge region may be important in the functional interaction of the cytoplasmic domains.  相似文献   

13.
Ayers RA  Moffat K 《Biochemistry》2008,47(46):12078-12086
FixL from Bradyrhizobium japonicum is a PAS sensor protein in which two PAS domains covalently linked to a histidine kinase domain are responsible for regulating nitrogen fixation in an oxygen-dependent manner. The more C-terminal PAS domain, denoted bjFixLH, contains a heme cofactor that binds diatomic molecules such as carbon monoxide and oxygen and regulates the activity of the FixL histidine kinase as part of a two-component signaling system. We present the structures of ferric, deoxy, and carbon monoxide-bound bjFixLH in a new space group ( P1) and at resolutions (1.5-1.8 A) higher than the resolutions of those previously obtained. Interestingly, bjFixLH can form two different dimers (in P1 and R32 crystal forms) in the same crystallization solution, where the monomers in one dimer are rotated approximately 175 degrees relative to the second. This suggests that PAS monomers are plastic and that two quite distinct quaternary structures are closely similar in free energy. We use screw rotation analysis to carry out a quantitative pairwise comparison of PAS quaternary structures, which identifies five different relative orientations adopted by isolated PAS monomers. We conclude that PAS monomer arrangement is context-dependent and could differ depending on whether the PAS domains are isolated or are part of a full-length protein. Structurally homologous residues comprise a conserved dimer interface. Using network analysis, we find that the architecture of the PAS dimer interface is continuous rather than modular; the network of residues comprising the interface is strongly connected. A continuous dimer interface is consistent with the low dimer-monomer dissociation equilibrium constant. Finally, we quantitate quaternary structural changes induced by carbon monoxide binding to a bjFixLH dimer, in which monomers rotate by up to approximately 2 degrees relative to each other. We relate these changes to those in other dimeric PAS domains and discuss the role of quaternary structural changes in the signaling mechanisms of PAS sensor proteins.  相似文献   

14.
In vivo cross-linking between native cysteines in the Aer receptor of Escherichia coli showed dimer formation at the membrane anchor and in the putative HAMP domain. Dimers also formed in mutants that did not bind flavin adenine dinucleotide and in truncated peptides without a signaling domain and part of the HAMP domain.  相似文献   

15.
The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants.  相似文献   

16.
Aer, the Escherichia coli aerotaxis (oxygen-sensing) receptor, is representative of a small class of receptors that face the cytoplasm in bacteria. Instead of sensing oxygen directly, Aer detects redox changes in the electron transport system or cytoplasm when the bacteria enter or leave a hypoxic microniche. As a result, Aer sensing also enables bacteria to avoid environments where carbon deficiency, unfavourable reduction potential or other insults would limit energy production. An FAD-binding PAS domain is the sensor for Aer and a HAMP domain interacts with the PAS domain to form an input-output module for signal transduction. By analogy to the first solution structure of an isolated HAMP domain from Archaeoglobus, Aer HAMP is proposed to fold into a four-helix bundle that rotates between a signal-on and signal-off conformation. Aer is the first protein in which a PAS-HAMP input-output module has been investigated. The structure and signal transduction mechanism of Aer is providing important insights into signalling by PAS and HAMP domains.  相似文献   

17.
RNase G is the endoribonuclease responsible for forming the mature 5' end of 16S rRNA. This enzyme shares 35% identity with and 50% similarity to the N-terminal 470 amino acids encompassing the catalytic domain of RNase E, the major endonuclease in Escherichia coli. In this study, we developed non-denaturing purifications for overexpressed RNase G. Using mass spectrometry and N-terminal sequencing, we unambiguously identified the N-terminal sequence of the protein and found that translation is initiated at the second of two potential start sites. Using velocity sedimentation and oxidative cross-linking, we determined that RNase G exists largely as a dimer in equilibrium with monomers and higher multimers. Moreover, dimerization is required for activity. Four of the six cysteine residues of RNase G were mutated to serine. No single cysteine to serine mutation resulted in a complete loss of cross-linking, dimerization or activity. However, multiple mutations in a highly conserved cluster of cysteines, including C405 and C408, resulted in a partial loss of activity and a shift in the distribution of RNase G multimers towards monomers. We propose that many of the cysteines in RNase G lie on its surface and define, in part, the subunit-subunit interface.  相似文献   

18.
CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme that controls phosphatidylcholine synthesis, is regulated by reversible interactions with membranes containing anionic lipids. Previous work demonstrated that CCT is a homodimer. In this work we show that the structure of the dimer interface is altered upon encountering membranes that activate CCT. Chemical cross-linking reactions were established which captured intradimeric interactions but not random CCT dimer collisions. The efficiency of capturing covalent cross-links with four different reagents was diminished markedly upon presentation of activating anionic lipid vesicles but not zwitterionic vesicles. Experiments were conducted to show that the anionic vesicles did not interfere with the chemistry of the cross-linking reactions and did not sequester available cysteine sites on CCT for reaction with the cysteine-directed cross-linking reagent. Thus, the loss of cross-linking efficiency suggested that contact sites at the dimer interface had increased distance or reduced flexibility upon binding of CCT to membranes. The regions of the enzyme involved in dimerization were mapped using three approaches: 1) limited proteolysis followed by cross-linking of fragments, 2) yeast two-hybrid analysis of interactions between select domains, and 3) disulfide bonding potential of CCTs with individual cysteine to serine substitutions for the seven native cysteines. We found that the N-terminal domain (amino acids 1-72) is an important participant in forming the dimer interface, in addition to the catalytic domain (amino acids 73-236). We mapped the intersubunit disulfide bond to the cystine 37 pair in domain N and showed that this disulfide is sensitive to anionic vesicles, implicating this specific region in the membrane-sensitive dimer interface.  相似文献   

19.
The b subunit dimer of the Escherichia coli ATP synthase, along with the delta subunit, is thought to act as a stator to hold the alpha(3)beta(3) hexamer stationary relative to the a subunit as the gammaepsilonc(9-12) complex rotates. Despite their essential nature, the contacts between b and the alpha, beta, and a subunits remain largely undefined. We have introduced cysteine residues individually at various positions within the wild type membrane-bound b subunit, or within b(24-156), a truncated, soluble version consisting only of the hydrophilic C-terminal domain. The introduced cysteine residues were modified with a photoactivatable cross-linking agent, and cross-linking to subunits of the F(1) sector or to complete F(1)F(0) was attempted. Cross-linking in both the full-length and truncated forms of b was obtained at positions 92 (to alpha and beta), and 109 and 110 (to alpha only). Mass spectrometric analysis of peptide fragments derived from the b(24-156)A92C cross-link revealed that cross-linking took place within the region of alpha between Ile-464 and Met-483. This result indicates that the b dimer interacts with the alpha subunit near a non-catalytic alpha/beta interface. A cysteine residue introduced in place of the highly conserved arginine at position 36 of the b subunit could be cross-linked to the a subunit of F(0) in membrane-bound ATP synthase, implying that at least 10 residues of the polar domain of b are adjacent to residues of a. Sites of cross-linking between b(24-156)A92C and beta as well as b(24-156)I109C and alpha are proposed based on the mass spectrometric data, and these sites are discussed in terms of the structure of b and its interactions with the rest of the complex.  相似文献   

20.
The energy taxis receptor Aer, in Escherichia coli , senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins P er, A RNT and S im, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conserved domain (HCD) found in chemotaxis receptors. An apparent energy taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that have the domains of Aer divided between them. CetB has a PAS domain, while CetA has a predicted transmembrane region, HAMP domain and the HCD. In this study, we examined the expression of cetA and cetB and the biochemical properties of the proteins they encode. cetA and cetB are co-transcribed independently of the flagellar regulon. CetA has two transmembrane helices in a helical hairpin while CetB is a peripheral membrane protein tightly associated with the membrane. CetB levels are CetA dependent. Additionally, we demonstrated that both CetA and CetB participate in complexes, including a likely CetB dimer and a complex that may include both CetA and CetB. This study provides a foundation for further characterization of signal transduction mechanisms within CetA/CetB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号