首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Exon 6B from the chicken β-tropomyosin pre-mRNA is alternatively spliced during myogenic differentiation. Exon 6B is excluded in mRNA from myoblasts and included in mRNA from myotubes. We investigated the regulation of exon 6B inclusion ex vivo in a quail myogenic cell line, which behaves as myoblasts in undifferentiated state and as myotubes after differentiation. We show that the β-tropomyosin exon 6B is a novel target of CUG-BP and ETR-3-like factor (CELF). Overexpression of CELF proteins in myoblasts activates splicing of exon 6B. Using a dominant-negative form of CELF4, we demonstrate that CELF proteins are involved in switching splicing from exon 6A towards exon 6B inclusion during myogenic differentiation. We also found that polypyrimidine tract binding protein (PTB) is required for splicing repression of exon 6B in myoblasts. CELF and PTB proteins exhibit antagonistic properties toward inclusion of exon 6B during myogenic differentiation. Our results suggest that a change in the protein level of CUGBP1 and PTB proteins, associated with a distinct pattern of PTB during the transition from myoblasts to myotubes is one of the parameters involved in regulating splicing of exon 6B during myogenesis.  相似文献   

4.
The chicken beta tropomyosin gene contains two sets of alternatively spliced, mutually exclusive exons whose utilization is developmentally regulated. Exons 6A and 6B are used in nonmuscle cells (or undifferentiated muscle cells) and skeletal muscle cells, respectively. A complex arrangement of cis-acting sequence elements is involved in alternative splicing regulation. We have performed an extensive mutational analysis on the sequence spanning the region from exon 6A to the constitutive exon 7. A large number of mutant minigenes have been tested in transfection assays of cultured myogenic cells, and the splicing products have been analyzed by cDNA polymerase chain reaction. We demonstrate that in undifferentiated myoblasts, exon 6B is skipped as a result of a negative control on its selection, while exon 6A is spliced as a default choice. We provide evidence that the focal point of such a regulation is localized in the intron upstream of exon 6B and probably involves the blockage of its associated branch point. In differentiated myotubes, in contrast, both exons are accessible to the splicing machinery. We show that the preferential choice of exon 6B in this splicing environment depends on the existence of a competition between the two exons for the flanking constitutive splice sites. We demonstrate that both the donors and the branch points of the two exons are involved in this competition.  相似文献   

5.
6.
Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA (“STAR” motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3′ UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.  相似文献   

7.
The Xenopus alphafast-tropomyosin gene contains in its central part a set of mutually exclusive exons, designated 6A and 6B, which are incorporated into mRNA encoding, respectively, nonmuscle and muscle tropomyosins. In this study, we show that usage of both exons is strictly regulated during development, exon 6A being used in the oocyte and nonmuscle tissues of the embryo, while exon 6B is used in muscle tissues. An approach of transient embryo transgenesis was developed to study the mechanisms involved in the splice site choice during development. We demonstrate that a-tropomyosin minigenes driven by tissue-specific promoters that target gene expression in nonmuscle and muscle tissues recapitulate the splicing pattern of the endogenous gene. A mutational analysis showed that regulation occurred at both exons 6A and 6B in muscle and nonmuscle tissues. In this context, we have identified an element located in the intron downstream of 6A that participates in the recognition of the weak 5' splice site of exon 6A and the repression of exon 6B in nonmuscle cells.  相似文献   

8.
Alternative splicing of chicken beta-tropomyosin (beta-TM) pre-mRNAs ensures that in nonmuscle cells, only exon 6A is expressed, whereas in skeletal muscle, exon 6B is utilized preferentially. We have previously shown that efficient splicing of the nonmuscle exon 6A requires two pyrimidine-rich splicing enhancers (S4 and I5Y) that are present in the introns flanking exon 6A. Here, we examined the function of the S4 and I5Y elements by replacing them within beta-TM minigenes by other pyrimidine- and purine-rich sequence elements and analyzing splicing in transfected quail nonmuscle and muscle cells. Several features of these splicing regulatory elements were revealed by this study. First, a wide variety of pyrimidine-rich sequences can replace the intronic S4 splicing enhancer, indicating that pyrimidine composition, rather than sequence specificity, determines activity for this element. Second, one type of purine-rich sequence (GARn), normally found within exons, can also replace the S4 splicing enhancer. Third, the diverse elements tested exhibit differential activation of the splice sites flanking exon 6A and different positional constraints. Fourth, the strength of the S4 splicing enhancer is appropriately set to obtain proper regulation of the transition from exon 6A splicing in myoblasts to exon 6B splicing in myotubes, but this splicing regulatory element is not the target for cell-type-specific splicing factors.  相似文献   

9.
10.
11.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

12.
By alternative splicing, exons 4, 5, and 6 of the human leukocyte common antigen (LCA) gene are included in B-cell mRNA but excluded from thymocyte mRNA. A mini-LCA gene that contains only LCA exons 2, 6, and 8 faithfully reproduces this tissue-specific alternative splicing in mouse B and thymocyte cell lines. Elimination of almost all of the intron sequences associated with exon 6 had no effect on the alternative splicing, while linker-scanning analysis showed that a significant length of the exon 6 sequence is essential for alternative splicing.  相似文献   

13.
R E Breitbart  B Nadal-Ginard 《Cell》1987,49(6):793-803
Alternative RNA splicing is a ubiquitous process permitting single genes to encode multiple protein isoforms. Here we report experiments in which a gene construct, containing combinatorial Troponin T (TnT) exons that manifest an exceptional diversity of alternative splicing in vivo, has been transfected into muscle and nonmuscle cells. Analyses of the spliced RNAs show that the alternative TnT exons retain their capacity for differential splicing in the modified minigene context when introduced into a variety of nonmuscle and muscle cells. The patterns of alternative splicing differ depending on cell type. Only in differentiated myotubes are the alternative exons normally incorporated during splicing, reproducing their behavior in the native gene; they are excluded in nonmuscle cells and myoblasts that do not express the endogenous TnT. These results provide proof that trans factors required for correct alternative splicing are induced during myogenesis. Surprisingly, such factors are also required for the correct splicing of constitutive TnT exons.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号