首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly-3-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) was produced using a co-culture of activated sludge. When butyric acid was used as sole carbon source, PHB was produced. When valeric acid was added to the medium, PHBV was produced. The 3-hydroxyvalerate (3HV) mole fraction in the PHBV reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV units in the co-polymer increased from 0.0 to 54.0 mol%, the melting temperature ( T m ) decreased from 178 to 99°C. The composition, and hence the mechanical properties, of the co-polymer produced by activated sludge can be controlled by adjusting the medium composition.  相似文献   

2.
Cells ofBacillus megaterium contain 35–45% of poly(3-hydroxybutyrate) (PHB) at the beginning of the stationary phase. This amount is only slightly affected by the medium composition. The PHB granules are spherical with the mean diameter of 1.15 μm.  相似文献   

3.
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h.  相似文献   

4.
本研究以聚羟基脂肪酸酯家族中的新成员羟基丁酸和羟基己酸共聚物(PHBHHx)为基础,采用与聚乙二醇(PEG)共混的方法对其进行改性,研究结果证实:PHBHHx与PEG 共混物中比例为3:1及2:1时,两者完全物理相容。而PEG在共混物中比例升高时则导致相分离,成为部分相容体系。PEG掺入显著提高材料亲水性及表面自由能,使血管平滑肌细胞(RaSMCs)及血管内皮细胞(HUVECs)的细胞粘附及增殖大幅度提高,并且均具有一定的PEG含量依赖性。其中对RaSMCs的作用最为明显,RaSMCs能在PEG/PHBHHx比例为1:1的共混膜(E1X1)上持续增殖至融合,而HUVECs则呈粘附较差的类球形形貌,证实E1X1可以潜在应用于复合血管组织工程支架中的近内膜基材。  相似文献   

5.
Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The thermal properties of the nanofibrous blends was analyzed by differential scanning calorimetry (DSC), which indicated that the melting and glass temperatures, and crystallization degree of the blends decreased as the PHBV weight ratio increased. Raman spectroscopy also revealed that the full width at half height of the band centered at 1725 cm−1 can be used to estimate the crystalline degree of the electrospun meshes. Random and aligned nanofibrous scaffolds were also fabricated by electrospinning of PHB and PHBV with or without type I collagen. The influence of blend composition, fiber alignment and collagen incorporation on Schwann cell (SCs) organization and function was investigated. SCs attached and proliferated over all scaffolds formulations up to 14 days. SCs grown on aligned PHB/PHBV/collagen fibers exhibited a bipolar morphology that oriented along the fiber direction, while SCs grown on the randomly oriented fibers had a multipolar morphology. Incorporation of collagen within nanofibers increased SCs proliferation on day 14, GDNF gene expression on day 7 and NGF secretion on day 6. The results of this study demonstrate that aligned PHB/PHBV electrospun nanofibers could find potential use as scaffolds for nerve tissue engineering applications and that the presence of type I collagen in the nanofibers improves cell differentiation.  相似文献   

6.

The extreme haloarchaea Haloferax mediterranei accumulates poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) without the need for specific precursors. In this study, growth kinetics and PHBV synthesis were characterised under nitrogen-excess and nitrogen-limiting conditions in ammonium and, for the first time, nitrate. With excess nitrogen, ammonium and nitrate cultures generated 10.7 g/L biomass containing 4.6 wt% PHBV and 5.6 g/L biomass with 9.3 wt% PHBV, respectively. Copolymer composition varied with the nitrogen source used: PHBV from ammonium cultures had 16.9 mol% 3-hydroxyvalerate (HV), while PHBV from nitrate cultures contained 12.5 mol% HV. Nitrogen limitation was achieved with carbon-to-nitrogen (C/N) molar ratios of 25 or higher. Nitrogen limitation reduced biomass generation and polymer concentration, but polymer accumulation increased to 6.6 and 9.4% for ammonium and nitrate, respectively, with C/N 42. PHBV composition was also affected and cultures with lower C/N ratios produced richer HV polymers. Copolymer formation was not a uniform process: HV was only detected after a minimum accumulation of 0.45 g/L PHB and lasted for a maximum of 48 h. The understanding of copolymer synthesis and the influence of culture conditions such as the nitrogen source will help in designing novel strategies for the production of PHBV with more regular structure and material properties.

  相似文献   

7.
In a limited-scale survey, 55 soil streptomycetes were screened for the accumulation of poly (3-hydroxybutyrate) [PHB]. Only 18% of the isolates accumulated PHB ranging between 1.9–7.8% of the dry biomass. The promising isolate DBCC-719, identified as Streptomyces griseorubiginosus, accumulated PHB amounting to 9.5% of the mycelial dry mass in the early stationary phase when grown in chemically defined medium with 2% (wt/vol) glucose as the sole source of carbon. Nitrogen-limiting conditions were inhibitory to growth and PHB accumulation. The isolated polymer was highly soluble in chloroform, gave a sharp peak at 235 nm on digestion with concentrated H2SO4, and had a characteristic infrared spectrum. Received: 26 March 1999 / Accepted: 3 May 1999  相似文献   

8.
利用Clostridium acetobutylicum的丁酸激酶基因 (buk) 和磷酸转丁酰基酶基因(ptb),以及Thiocapsa pfennigii的PHA合成酶基因,设计了一条能够合成多种聚羟基烷酸的代谢途径,用构建的质粒转化大肠杆菌,获得了重组大肠杆菌菌株.前期的研究表明,在合适的前体物条件下,该重组大肠杆菌能够合成包括聚羟基丁酸、聚(羟基丁酸-戊酸)等多种生物聚酯[Liu and Steinbüchel, Appl. Environ. Microbiol. 66739-743].利用该重组大肠杆菌,通过生物催化作用合成了3-巯基丙酸的同型共聚酯,同时利用该重组大肠杆菌还获得了含3-巯基丙酸单体的多种异型共聚物.实验首先研究了3-巯基丙酸对大肠杆菌生长的影响,在此基础上优化了培养过程中添加3-巯基丙酸的时机和浓度,结果表明,在实验的条件下,细胞合成聚(3-巯基丙酸)可达6.7%(占细胞干重),合成聚(3-羟基丁酸-3-巯基丙酸)(分子中3-巯基丙酸3-羟基丁酸=31)可达24.3%.实验进一步研究了同时或分别表达以上3个基因的重组大肠杆菌合成聚合物的能力,结果表明只有当3个基因同时表达时才能合成聚合物,说明3个基因对合成过程是必须的,从而表明了合成途径是按照设计的路线进行的.还通过GC/MS、GPC、IR等手段对合成的化合物进行了定性的研究.聚(3-巯基丙酸)或聚(3-羟基丁酸-3-巯基丙酸)等聚酯属于一类新型生物聚合物,它在分子骨架中含有硫酯键,不同于聚羟基烷酸酯的氧酯键,从而具有显著不同的物理、化学、光学等性质和具有重要的潜在应用价值.  相似文献   

9.
The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.  相似文献   

10.
In order to enhance 3-hydroxyvalerate (3HV) fraction in copolyesters of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the propionate permease gene prpP or the propionyl-CoA synthase gene prpE was transformed into Escherichia coli XL10-Gold with co-expression of PHB operon (phaCAB) from Ralstonia eutropha. The recombinant E. coli strains were cultured on mixed carbon sources composed of glucose and propionic acid to promote PHBV accumulation. It was shown that the over-expression of prpE suppressed 3HV incorporation into PHBV copolymer, which led to reduced 3HV fraction. In contrast, the over-expression of prpP improved the 3HV content from 5.6 to 14.3 mol%, followed by an increased PHBV accumulation up to 62 wt%. The results showed that the expression of prpP stimulated the uptake and utilization of propionic acid and increased the 3HV fraction in PHBV. However, the over-expression of prpE in E. coli did not affect 3HV content in PHBV. Surprisingly, co-expression of prpE and prpP did not lead to any 3HV formation. This study showed the possibility to change the PHBV composition without overdose of propionic acid which is expensive and toxic for the cells.  相似文献   

11.
Many poly-3-hydroxybutyrate (PHB)-degrading enzymes have been studied. But biological roles of 3HB-oligomer hydrolases (3HBOHs) and how PHB depolymerases (PHBDPs) and 3HBOHs cooperate in PHB metabolism are not fully elucidated. In this study, several PHBDPs and 3HBOHs from three types of bacteria were purified, and their substrate specificity, kinetic properties, and degradation products were investigated. From the results, PHBDP and 3HBOH seemed to play a role in PHB metabolism in three types of bacteria, as follows: (A) In Ralstonia pickettii T1, an extracellular PHBDP degrades extracellular PHB to various-sized 3HB-oligomers, which an extracellular 3HBOH hydrolyzes to 3HB-monomers. (B) In Acidovorax sp. SA1, an extracellular PHBDP hydrolyzes extracellular PHB to small 3HB-oligomers (dimer and trimer), which an intracellular 3HBOH efficiently degrades to 3HB in the cell. (C) In Ralstonia eutropha H16, an intracellular 3HBOH helps in the degradation of intracellular PHB inclusions by PHBDP.  相似文献   

12.
Several recombinant Escherichia coli strains harboring the Alcaligenes eutrophus polyhydroxyalkanoate biosynthesis genes were used to produce poly(3-hydroxybutyrate), PHB, from xylose. By flask culture of TG1 (pSYL107) in a defined medium containing 20?g/l xylose, PHB concentration of 1.7?g/l was obtained. Supplementation of a small amount of cotton seed hydrolysate or soybean hydrolysate could enhance PHB production by more than two fold. The PHB concentration, PHB content, and PHB yield on xylose obtained by supplementing soybean hydrolysate were 4.4?g/l, 73.9%, and 0.226?g PHB/g xylose, respectively.  相似文献   

13.
聚羟基烷酸酯 (PHA) 改性研究进展   总被引:3,自引:0,他引:3  
本文简述了生物制造聚羟基烷酸酯(PHA),包括聚3-羟基丁酸酯(PHB)、聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)、聚(3-羟基丁酸酯-4-羟基丁酸酯)(P3/4HB)、聚(3-羟基丁酸酯-3-羟基己酸酯)(PHBH)的产业化现状,综述了针对PHA材料热稳定性差、加工窗口较窄等缺点而进行的一些改性研究。选用适当方法对PHA进行改性,可使其性能得到优化,应用领域得到拓展。  相似文献   

14.
Two methods for accurate poly(3-hydroxybutyrate) (PHB) depolymerase activity determination and quantitative and qualitative hydrolysis product determination are described. The first method is based on online determination of NaOH consumption rates necessary to neutralize 3-hydroxybutyric acid (3HB) and/or 3HB oligomers produced during the hydrolysis reaction and requires a pH-stat apparatus equipped with a software-controlled microliter pump for rapid and accurate titration. The method is universally suitable for hydrolysis of any type of polyhydroxyalkanoate or other molecules with hydrolyzable ester bonds, allows the determination of hydrolysis rates of as low as 1 nmol/min, and has a dynamic capacity of at least 6 orders of magnitude. By applying this method, specific hydrolysis rates of native PHB granules isolated from Ralstonia eutropha H16 were determined for the first time. The second method was developed for hydrolysis product identification and is based on the derivatization of 3HB oligomers into bromophenacyl derivates and separation by high-performance liquid chromatography. The method allows the separation and quantification of 3HB and 3HB oligomers up to the octamer. The two methods were applied to investigate the hydrolysis of different types of PHB by selected PHB depolymerases.  相似文献   

15.
The metabolic pathways of poly(3-hydroxybutyrate) (PHB) and polyphosphate in the microorganism Alcaligenes eutrophus H16 were studied by 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy and by conventional analytical techniques. A. eutrophus cells accumulated two storage polymers of PHB and polyphosphate in the presence of carbon and phosphate sources under aerobic conditions after exhaustion of nitrogen sources. The solid-state cross-polarization/magic-angle spinning 13C NMR spectroscopy was used to study the biosynthetic pathways of PHB and other cellular biomass components from 13C-labeled acetate. The solid-state 13C NMR analysis of lyophilized intact cells grown on [1-13C]acetate indicated that the carbonyl carbon of acetate was selectively incorporated both into the carbonyl and methine carbons of PHB and into the carbonyl carbons of proteins. The 31P NMR analysis of A. eutrophus cells in suspension showed that the synthesis of intracellular polyphosphate was closely related to the synthesis of PHB. The roles of PHB and polyphosphate in the cells were studied under conditions of carbon, phosphorus, and nitrogen source starvation. Under both aerobic and anaerobic conditions PHB was degraded, whereas little polyphosphate was degraded. The rate of PHB degradation under anaerobic conditions was faster than that under aerobic conditions. Under anaerobic conditions, acetate and 3-hydroxybutyrate were produced as the major extracellular metabolites. The implications of this observation are discussed in connection with the regulation of PHB and polyphosphate metabolism in A. eutrophus.  相似文献   

16.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

17.
Several processes for the production and recovery of poly(3-hydroxybutyrate) (PHB) by Alcaligenes eutrophus, Alcaligenes latus, Methylobacterium organophilum, and recombinant Escherichia coli were designed based on the previously reported data and analyzed by computer-aided bioprocess design. PHB productivity, content, and yield significantly affected the final price of PHB. For the annual production of 2,850 tonnes of purified PHB, the process employing A. eutrophus with the recovery method of surfactant-hypochlorite digestion resulted in lowest price of PHB, $ 5.58/kg. As the production scale increased to one million tonnes per year, the price of PHB dropped to $ 4.75/kg. The cost of carbon substrate significantly affected the overall economics in large production scale. Therefore, the production cost can be considerably lowered when agricultural wastes, such as whey and molasses, are used.  相似文献   

18.
Journal of Industrial Microbiology & Biotechnology - Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different...  相似文献   

19.
Degradation of natural and synthetic polyesters under anaerobic conditions   总被引:4,自引:0,他引:4  
Often, degradability under anaerobic conditions is desirable for plastics claimed to be biodegradable, e.g. in anaerobic biowaste treatment plants, landfills and in natural anaerobic sediments. The biodegradation of the natural polyesters poly(beta-hydroxybutyrate) (PHB), poly(beta-hydroxybutyrate-co-11.6%-beta-hydroxyvalerate) (PHBV) and the synthetic polyester poly(epsilon-caprolactone) (PCL) was studied in two anaerobic sludges and individual polyester degrading anaerobic strains were isolated, characterized and used for degradation experiments under controlled laboratory conditions. Incubation of PHB and PHBV films in two anaerobic sludges exhibited significant degradation in a time scale of 6-10 weeks monitored by weight loss and biogas formation. In contrast to aerobic conditions, PHB was degraded anaerobically more rapidly than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate. PCL tends to degrade slower than the natural polyesters PHB and PHBV. Four PHB and PCL degrading isolates were taxonomically identified and are obviously new species belonging to the genus Clostridium group I. The depolymerizing enzyme systems of PHB and PCL degrading isolates are supposed to be different. Using one isolated strain in an optimized laboratory degradation test with PHB powder, the degradation time was drastically reduced compared to the degradation in sludges (2 days vs. 6-10 weeks).  相似文献   

20.
Numerous bacteria accumulate poly(3‐hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号