首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bauer KM  Lambert PA  Hummon AB 《Proteomics》2012,12(12):1928-1937
A label-free mass spectrometric strategy was used to examine the effect of 5-fluorouracil (5-FU) on the primary and metastatic colon carcinoma cell lines, SW480 and SW620, with and without treatment. 5-FU is the most common chemotherapeutic treatment for colon cancer. Pooled biological replicates were analyzed by nanoLC-MS/MS and protein quantification was determined via spectral counting. Phenotypic and proteomic changes were evident and often similar in both cell lines. The SW620 cells were more resistant to 5-FU treatment, with an IC(50) 2.7-fold higher than that for SW480. In addition, both cell lines showed pronounced abundance changes in pathways relating to antioxidative stress response and cell adhesion remodeling due to 5-FU treatment. For example, the detoxification enzyme NQO1 was increased with treatment in both cell lines, while disparate members of the peroxiredoxin family, PRDX2 or PRDX5 and PRDX6, were elevated with 5-FU exposure in either SW480 or SW620, respectively. Cell adhesion-associated proteins CTNNB1 and RhoA showed decreased expression with 5-FU treatment in both cell lines. The differential quantitative response in the proteomes of these patient-matched cell lines to drug treatment underscores the subtle molecular differences separating primary and metastatic cancer cells.  相似文献   

2.
Adjuvant therapy has evolved to become the standard care of colon cancer, but the tumor capability of activating effective mechanisms of defence against both chemical and physical cytotoxic agents represents a serious obstacle to the successful therapy. Furthermore, the possibility to have an assay useful to measure the drug sensitivity of tumor cells could be of a great importance. As primary human colon cancer cultures from fresh tumor are technically difficult to obtain, experiments with human cancer cell lines remain essential to explore new adjuvant chemotherapy drugs, to investigate the individual responsiveness to the known agents, and particularly to clarify how these chemotherapeutic agents could be used in maximizing outcomes. In the present study we evaluate the cytotoxic effects of 5-fluorouracil (5-FU) and oxaliplatin (OHP) and of their pharmacological interaction in three human colon cancer cell lines (WiDr, HT-29 and SW620), by using an ATP luminescence assay (ATPlite; Perkin Elmer), displaying high sensitivity, linearity and reproducibility. Cell cycle, apoptosis and CD44 expression were investigated with flow cytometry. Our results show that the drug combinations inhibited the cell growth more than each drug alone in all colorectal cancer cell lines. Interestingly, the sequential exposure of OHP and 5-FU resulted in the most cytotoxic effect in all colon cancer cell lines, when compared to the simultaneous one. Our results focus on the powerful cytotoxic effect of 5-FU-OHP combination, when used in sequential exposure, suggesting interesting implications for a rational use of 5-FU, OHP combination in colon-rectal cancer therapy.  相似文献   

3.
Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC50 values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC50) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC50. There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient’s tumors rather than secondary cell lines will more closely reflect the actual character of the disease.  相似文献   

4.
Carcinoembryonic antigen (CEA) expression has been shown to protect cancer cell lines from apoptosis and anoikis. The aim of this study was to further elucidate the role of CEA expression on resistance to anticancer drugs in human colorectal cancer (CRC). We transfected CEA negative CRC cell line SW742 as well as CHO cells to overexpress CEA and their chemoresistance were assessed by MTT assay. In comparison to the parental cell lines, transfected cells had significantly increased resistance to 5-fluorouracil (5-FU). The results also showed a direct correlation between the amount of cellular CEA protein and 5-FU resistance in CEA expressing cells. We found no significant difference in sensitivity to cisplatin and methotrexate between CEA-transfected cells and their counter parental cells. We also compared the association between CEA expression and chemoresistance of 4 CRC cell lines which differed in the levels of CEA production. The CEA expression levels in monolayer cultures of these cell lines did not correlate with the 5-FU resistance. However, 5-FU treatment resulted in the selection of sub-populations of resistant cells that displayed increased CEA expression levels by increasing drug concentration. We analyzed the effect of 5-FU in a 3D multicellular culture generated from the two CRC cell lines, LS180 and HT29/219. Compared with monolayer culture, CEA production and 5-FU resistance in both cell lines were stimulated by 3D growth. In comparison to the 3D spheroids of parental CHO, we observed a significantly elevated 5-FU resistance in 3D culture of the CEA-expressing CHO transfectants. Our findings suggest that the CEA level may be a suitable biomarker for predicting tumor response to 5-FU-based chemotherapy in CRC.  相似文献   

5.
6.
7.
Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU) was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI) < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.  相似文献   

8.
Selenite is frequently used in combination with cancer chemotherapeutic agents to reduce side effects. However, the cytoprotective activity of selenite may also reduce the efficacy of chemotherapeutic drugs on tumor cells. This study was designed to examine the effects of selenite combined with cytotoxic agents used in clinical protocols [e.g., doxorubicine, docetaxel, 5-fluorouracil (5-FU), methotrexate (MTX), mafosphamide, mitomycin C, gemcitabine, etoposide, cisplatin, irinotecan, and oxaliplatin] on the proliferation of various carcinoma cell types. The data demonstrated that selenite had no marked effects on the antiproliferative activity of docetaxel, doxorubicine, 5-FU, MTX, and mafosphamide in MDA-MB-231 breast cancer cells. Likewise, no consistent changes were observed in A549 lung cancer cell proliferation when selenite was combined with cisplatin, etoposide, gemcitabine, or mitomycin C. On the other hand, selenite potentiated the cytotoxicity of 5-FU, oxaliplatin, and irinotecan in HCT116 colon cancer cells by approx 1.1-fold, 2.7-fold, and 2.6-fold, respectively. In SW620 colon cancer cells, selenite induced a 1.5-fold and 4.3-fold increase of the antiproliferative activity of 5-FU and oxaliplatin, respectively. Whereas irinotecan showed no effects on SW620 cell growth, a combination with selenite resulted in 23% inhibition. Our results indicate that selenite did not reduce the antiproliferative activity of chemotherapeutic agents in vitro. In addition, selenite was able to increase the inhibitory activity of docetaxel in A549 lung cancer cells, and of 5-FU, oxaliplatin, and irinotecan in HCT116 and SW620 colon cancer cells implying selenite is potentially useful as an adjuvant chemotherapeutic agent.  相似文献   

9.
为了探讨人野生型p53(wt-p53)基因增强大肠癌细胞化疗敏感性的分子生物学机制,将携带wt p53基因的质粒分别转染两种p53基因突变的人大肠癌细胞系HT-29及SW620,分析细胞中p53及细胞周期蛋白D1(cyclin D1)蛋白的表达水平;将化疗药物5 氟尿嘧啶(5-fluorouracil,5-FU)以不同浓度、不同时间分别作用于HT-29及SW620细胞,另外将已转染wt-p53基因的大肠癌细胞用5-FU进行诱导,Western印迹分析上述干预条件下细胞中p53蛋白及细胞周期蛋白D1表达水平的变化;流式细胞术检测wt p53基因联合5-FU组及对照组中细胞凋亡的改变情况.结果表明,wt-p53基因能增加癌细胞中细胞周期蛋白D1的表达,与wt-p53基因呈剂量依赖性关系;5-FU则降低其蛋白表达,与5-FU呈时间和剂量依赖性关系,而5-FU所致的细胞周期蛋白D1表达水平的降低在细胞预先转染了wt- p53基因时会被抑制;wt-p53基因与5-FU联合使用能提高大肠癌细胞凋亡率.结果提示,wt-p53基因可提高大肠癌细胞中细胞周期蛋白D1的表达水平,并抑制5-FU所致的细胞周期蛋白D1降解,从而提高大肠癌细胞对化疗药物5-FU的敏感性.  相似文献   

10.
Summary The anticancer chemotherapeutic drugs melphalan (L-phenylalanine mustard; L-PAM), 5-fluorouracil (5-FU), methotrexate (MTX), and daunorubicin (DAU) were tested for their toxic activity against MOPC-315 tumor cells in vitro. L-PAM, 5-FU, and DAU had a marked toxic effect whereas MTX did not affect the rate of thymidine incorporation in the tumor cells. L-PAM (7.5 mg/kg) induced permanent regression of large s.c. MOPC-315 plasmacytoma tumors, 5-FU (200–250 mg/kg) induced transient regression of MOPC-315 tumors with reappearance starting on the 6th day after the 5-FU injection and DAU (5 mg/kg) was not effective. L-PAM treatment restored the cytotoxic potential of spleen cells of tumor-bearing mice against target MOPC-315 tumor cells whereas spleen cells from tumor-bearing mice treated with 5-FU were unable to mount a cytotoxic response.L-PAM and 5-FU were also assayed for their effect in vitro on induction of suppressor T cells by ConA. L-PAM treatment in vitro markedly reduced the induction of suppressor T cells by ConA whereas 5-FU had no effect. It is suggested that anticancer chemotherapeutic drugs can be classified in immunopromoting (L-PAM as prototype) and nonimmunopromoting (5-FU as protoype) on the basis of their effect in vivo on established tumors and their effect on induction of suppressor T cells by ConA.  相似文献   

11.
The in vitro embryotoxicity of 5-fluorouracil in rat embryos   总被引:1,自引:0,他引:1  
The fluorinated pyrimidine 5-fluorouracil (5-FU) is an effective chemotherapeutic agent that is teratogenic in a number of species. The mechanism for the embryopathic effect of the drug is unknown. We examined the effects of this compound on gestation day 10.5 rat embryos cultured for 48 hours in a rodent whole embryo culture system. Embryos were exposed for 1-4 hours to various doses of 5-FU. Embryolethality was minimal in all treatment groups. The malformation frequency increased with higher doses; within a dose, the malformation frequency increased with longer exposure to the drug. The tail and hindlimb bud were the most commonly affected structures in vitro; tail and leg defects are produced in several species by exposure to the drug in vivo. The embryopathic drug concentration in the culture media (2-8 micrograms/ml) is similar to the plasma level of 2-17 micrograms/ml, which is associated with embryopathy in vivo. Results from this study suggest that the whole embryo culture system is an appropriate model for developmental toxicity studies of 5-FU.  相似文献   

12.
The toxicities associated with 5-fluorouracil (5-FU), a potent broad-spectrum chemotherapeutic agent, can not only affect the morbidity and the efficacy of chemotherapy but also limit its clinical use. The objective of this study is to investigate the effects of a commercial anthocyanin-rich extract from bilberry (AREB) against 5-FU-induced myelotoxicity in vivo, and against chemosensitivity to 5-FU in vitro. A single injection of 5-FU at 200 mg/kg induced severe peripheral erythrocytopenia, thrombocytopenia and leucopenia as well as hypocellularity of the spleen and bone marrow in C57BL/6 mice. Oral administration of 500 mg/kg of AREB for 10 days significantly increased the number of red blood cells, neutrophils, and monocytes in peripheral blood to 1.2-fold, 9-fold, and 6-fold, respectively, compared with those seen after treatment with 5-FU alone (p< 0.05-0.001). The hypocellularity of the spleen and bone marrow caused by 5-FU was also distinctly alleviated in the AREB-treated group. Furthermore, AREB treatment with 50 and 100 microg/ml as a monomeric anthocyanin did not interfere with, but rather enhanced the chemotherapeutic efficacy of 5-FU in vitro. These results suggest that AREB may have protective potential against 5-FU-induced myelotoxiciy and/or the ability to enhance the chemotherapeutic effectiveness of 5-FU.  相似文献   

13.
We have previously identified mutated ras peptides reflecting the glycine to valine substitution at position 12 as HLA-A2-restricted, CD8+ CTL neo-epitopes. CTL lines produced against these peptide epitopes lysed the HLA-A2+ Ag-bearing SW480 primary colon adenocarcinoma cell line, although IFN-gamma treatment of the targets was necessary to achieve efficient cytotoxicity. Here, we compared the lytic phenotype of the SW480 cell line to its metastatic derivative, SW620, as an in vitro paradigm to further characterize the nature of a HLA class I-restricted, Ag-specific CTL response against neoplastic cell lines of primary and metastatic origin. Although both colon carcinoma cell lines were lysed by these Ag-specific CTL following IFN-gamma pretreatment, the mechanisms of lysis were distinct, which reflected differential levels of sensitivity to the Fas pathway. Whereas IFN-gamma pretreatment rendered SW480 cells sensitive to both Fas-dependent and -independent (perforin) pathways, SW620 cells displayed lytic susceptibility to Fas-independent mechanisms only. Moreover, pretreatment of SW480 cells with the anti-colon cancer agent, 5-fluorouracil (5-FU), led to enhanced Fas and ICAM-1 expression and triggered Ag-specific CTL-mediated lysis via Fas- and perforin-based pathways. In contrast, these phenotypic and functional responses were not observed with SW620 cells. Overall, these data suggested that 1) IFN-gamma and 5-FU may enhance the lytic sensitivity of responsive colon carcinoma cells to immune effector mechanisms, including Fas-induced lysis; 2) the malignant phenotype may associate with resistance to Fas-mediated lysis in response to Ag-specific T cell attack; and 3) if Ag-specific CTL possess diverse lytic capabilities, this may overcome, to some extent, the potential "escape" of Fas-resistant carcinoma cells.  相似文献   

14.
Hepatocellular carcinoma (HCC) is one of the few cancers in which a continuous increase in incidence has been observed over several years. Drug resistance is a major problem in the treatment of HCC. In the present study, we used salinomycin (Sal) and 5-fluorouracil (5-FU) combination therapy on HCC cell lines Huh7, LM3 and SMMC-7721 and nude mice subcutaneously tumor model to study whether Sal could increase the sensitivity of hepatoma cells to the traditional chemotherapeutic agent such as 5-FU. The combination of Sal and 5-FU resulted in a synergistic antitumor effect against liver tumors both in vitro and in vivo. Sal reversed the 5-FU-induced increase in CD133(+) EPCAM(+) cells, epithelial–mesenchymal transition and activation of the Wnt/β-catenin signaling pathway. The combination of Sal and 5-FU may provide us with a new approach to reverse drug resistant for the treatment of patients with HCC.  相似文献   

15.
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0–G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.  相似文献   

16.
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40–55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56–85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.  相似文献   

17.
The tumor suppressor p53 gene product is an essential component of the cytotoxic pathway triggered by DNA-damaging stimuli such as chemotherapeutic agents and ionizing radiation. We previously demonstrated that adenovirus-mediated wild-type p53 gene transfer could enhance the cytotoxic actions of chemotherapeutic drugs both in vitro and in vivo; however, the molecular mechanism of this chemosensitization is still unclear. Cyclin D1 is a major regulator of the progression of cells into the proliferative stage of the cell cycle. Here we show that infection with an adenovirus vector expressing the wild-type p53 gene (Ad-p53) caused an increase in cyclin D1 protein levels in human colorectal cancer cell lines DLD-1 and SW620; treatment with the anti-cancer drug adriamycin, however, down-regulated their cyclin D1 protein expression in a dose-dependent manner. The suppression of cyclin D1 expression following adriamycin treatment could be blocked by simultaneous Ad-p53 infection. Furthermore, DLD-1 and SW620 cells transfected with the cyclin D1 expression construct displayed increased sensitivity to adriamycin compared to that of the vector-transfected control. Our results suggest that ectopic wild-type p53 gene transfer results in increased cyclin D1 expression and, consequently, sensitizes human colorectal cancer cells to chemotherapeutic agents.  相似文献   

18.
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs.  相似文献   

19.
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40–55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56–85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.  相似文献   

20.
目的建立稳定表达红色荧光蛋白基因的人胰腺癌细胞系,为体内监测肿瘤的早期生长及抗肿瘤药物的药效评价建立一种新的肿瘤动物模型。方法以Lipofectamine 2000介导chickenβ-actin-RFP-NEO转染人胰腺癌细胞SW1990和Capan-2,经梯度浓度G418筛选获得稳定表达红色荧光蛋白的细胞克隆并扩大培养。BALB/cA-nu裸鼠皮下接种1×106个发光细胞使其成瘤,活体荧光成像系统观察肿瘤的生长情况。结果获得了稳定表达RFP的两种不同的人胰腺癌细胞株,将其接种到裸鼠体内可成瘤,利用活体成像系统观察了肿瘤的生长动态过程,并且SW1990肿瘤细胞的生长速度较Capan-2细胞快。结论用红色荧光蛋白标记的人胰腺癌细胞建立的裸鼠肿瘤模型为胰腺癌的研究和相关药物筛选提供了可进行荧光影像活体、动态分析的动物模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号