首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount of water voided by male Rhodnius prolixus which were flown to exhaustion varied from 0 to over 10% of the initial live weight. It accounted for nearly all of the body water lost during the flight period. Simultaneous measurements on the loss of haemolymph water and an estimate of the amount of faecal water in the excreta indicated that the source of the voided water was primarily the haemolymph. The total water content of the flight muscles changed very little in insects which flew to exhaustion. It is concluded that, despite the diuresis and loss of water, and the considerable reduction in haemolymph volume, dehydration of the flight muscles of male R. prolixus does not occur during these flight periods, and is not a factor contributing to ‘exhaustion’. The possibility that insufficient haemolymph is a factor limiting the duration of flight is discussed.  相似文献   

2.
In the order Collembola a clear relationship was found between overall cuticular water loss and water conditions of the habitat. The different transpiration rates were negatively correlated with the haemolymph osmotic pressure, but there was no clear causal relationship. In two species, Orchesella cincta and Tomocerus minor, which live sympatric but have a different micro-distribution (partly due to small scale heterogeneity in water conditions), important differences exist both in rate of water loss and in speed of water uptake: Orchesella cincta had a significantly lower transpiration and a higher speed of water uptake than Tomocerus minor. The transpiration rates of both species were linearly related to the vapour pressure deficit of the ambient air. Contrary to Orchesella cincta, Tomocerus minor lost water in saturated conditions. Freshly-killed Orchesella cincta had a higher transpiration rate than living individuals, but in Tomocerus minor there was no such difference. It is suggested that the main integumentary resistance against water loss in Orchesella cincta is the epidermal cell and in Tomocerus minor the epicuticle. The important rôle of the ventral vesicles in the water relations of Collembola was confirmed.  相似文献   

3.
Roads affect wildlife in many direct and indirect ways. For ungulates, roads may inhibit seasonal migration and may cause an effective loss of habitat due to avoidance. On the other hand, roadsides and associated agricultural lands offer high quality forage that may attract ungulates and increase the frequency of car accidents. Mitigating actions require detailed knowledge on space use in relation to roads. Using data from 67 global positioning system (GPS)-marked red deer in Norway, we quantified 1) scale of avoidance of roads, 2) crossing frequency, and 3) selection of crossing sites. Red deer avoided roads only on a very local scale and only during daytime, with minor influence of variation in road size (traffic burden). Marked red deer crossed roads, on average, 2 times per day. Females crossed more frequently than males and crossings were most frequent during autumn and winter and during night. Deer selected forested crossing sites close to agricultural pastures, reflecting that roads are crossed most often on nightly feeding excursions. Our findings imply that red deer in our study area have adjusted to exploit feeding habitat close to roads at times of low traffic burden. The high frequency of crossings suggests a limited influence on seasonal migration patterns. The frequency at which red deer cross highways suggests that mitigation measures to reduce road mortality may be effective if targeted in the right areas. © 2012 The Wildlife Society.  相似文献   

4.
Summary The adaptation to a variable environment has been studied within soft and hard selection frameworks. It is shown that an epistatically determined habitat preference, following a Markovian process, always leads to the maintenance of an adaptive polymorphism, in a soft selection context. Although local mating does not alter the conditions for polymorphism maintenance, it is shown that, in that case, habitat selection also leads to the evolution of isolated reproductive units within each available habitat. Habitat selection, however, cannot evolve in the total absence of adaptive polymorphism. This represents a theoretical problem for all models assuming habitat selection to be an initially fixed trait, and means that within a soft selection framework, all the available habitats will be exploited, even the less favourable ones.On the other hand, polymorphism cannot be maintained when selection is hard, even when all individuals select their habitat. Here, the evolution of habitat selection does not need any prerequisite polymorphism, and always leads to the exploitation of only one habitat by the most specialized genotype. It appears then that hard selection can account for the existence of empty habitat and for an easier evolution of habitat specialization.  相似文献   

5.
Ecologists and evolutionary biologists must develop theories that can predict the consequences of global warming and other impacts on Earth's biota. Theories of adaptive habitat selection are particularly promising because they link distribution and density with fitness. The evolutionarily stable strategy that emerges from adaptive habitat choice is given by the system's habitat isodar, the graph of densities in pairs of habitats such that the expectation of fitness is the same in each. We illustrate how isodars can be converted into adaptive landscapes of habitat selection that display the density‐ and frequency‐dependent fitness of competing strategies of habitat use. The adaptive landscape varies with the abundance of habitats and can thus be used to predict future adaptive distributions of individuals under competing scenarios of habitat change. Application of the theory to three species of Arctic rodents living on Herschel Island in the Beaufort Sea predicts changes in selection gradients as xeric upland increases in frequency with global warming. Selection gradients will become more shallow for brown lemming (Lemmus trimucronatus) and tundra vole (Microtus oeconomus) strategies that preferentially exploit mesic habitat. Climate change will cause selection gradients for the alternative strategy of using mostly xeric habitat to become much steeper. Meanwhile, the adaptive landscape for collared lemmings (Dicrostonyx groenlandicus), which specialize on xeric Dryas‐covered upland, will become increasingly convex. Changes in the adaptive landscapes thus predict expanding niches for Lemmus and Microtus, and a narrower niche for Dicrostonyx. The ability to draw adaptive landscapes from current patterns of distribution represents one of the few methods available to forecast the consequences of climate change on the future distribution and evolution of affected species.  相似文献   

6.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   

7.
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two‐way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.  相似文献   

8.
贺兰山马鹿冬季取食和卧息生境选择   总被引:3,自引:1,他引:3  
2007 年12 月至2008 年1 月,在贺兰山地区,利用痕迹检验法和直接观察法对马鹿阿拉善亚种的冬季取食和卧息生境选择进行研究。通过在选定的15 条沟段里进行调查,共测定了72 个取食利用样方,59 个卧息利用样方和131 个对照样方的18 种生态因子。结果表明,马鹿在冬季偏好的取食地为平滑起伏坡,以酸枣、柳为优势乔木、混合型树林或空地,乔木高大稀疏、间距较远,灌木密度大,草本盖度较高,位于< 15°的半阴半阳坡的下坡位,距裸岩远,隐蔽度高;偏好的卧息地在山地疏林草原带的平滑起伏坡上,以酸枣、柳为优势乔木、混合型树林或空地,乔木高大稀疏,灌木矮小、稀疏且距离较远,草本盖度较高,位于< 15°阳坡的下坡位,远离裸岩,隐蔽程度高。马鹿冬季的取食和卧息生境在草本盖度和隐蔽度上差异极显著。相对于卧息生境,马鹿冬季的取食生境对草本盖度和隐蔽度要求更低一些。马鹿冬季取食地的资源选择函数为1.155 - 0.149 × 乔木高度- 0.066 × 草本盖度+ 0.190 × 坡度,模型的正确判别率为86.8% ;马鹿冬季卧息地的资源选择函数为- 30.936
+ 0.494 × 乔木高度+ 0.257 × 坡度-0.002 × 海拔高度+ 0.387 × 隐蔽度,模型的正确判别率为95.8% 。食物、隐蔽条件以及贺兰山的独特地形特征是影响马鹿冬季取食和卧息生境选择的主要因素。  相似文献   

9.
It is difficult to imagine how warning colours evolve in unpalatable prey. Firstly, novel warningly coloured variants gain no protection from their colours, since predators have not previously encountered and learnt their colour patterns. This leads to a frequency-dependent disadvantage of a rare variant within a species. Secondly, novel warningly coloured variants may be more conspicuous than non-aposematic prey.
Nevertheless, it is obvious that many palatable butterflies have bright colours used in intraspecific communication and in duping predators. Other palatable butterflies are already warningly coloured. Should such butterflies evolve unpalatability, perhaps because of a host-plant shift, these bright colours would be preadapted to a warning role. Warning colours could then continue to evolve by enhancement of memorable characteristics of these patterns, or by mimicry.
Even within lineages of warningly coloured, unpalatable butterflies, colour patterns have continued to evolve rapidly. This diversity of warning colour patterns could have evolved in a number of ways, including individual and kin selection, and by the shifting balance. Evidence for these mechanisms is discussed, as are the similarities between the evolution of warning colours and more general evolutionary processes, including sexual selection and speciation.  相似文献   

10.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   

11.
Predation risk can influence habitat use and activity of potential prey. I explored how the risk of predation by vertebrates influenced the behavior of grasshoppers. I monitored the height in vegetation and the frequency of resting, moving, and feeding behaviors of both tethered and free-ranging grasshoppers under exposure to various predators. Grasshoppers protected from birds remained high in the vegetation, while those protected only from small mammals and lizards remained low in the vegetation. Grasshoppers exposed to all predators occupied an intermediate height. Lower positions in the vegetation were associated with cooler thermal conditions, lower feeding rates, and lower food availability. My results are consistent with the hypothesis that grasshoppers utilize different microhabitats to balance the trade-off between reducing mortality from predators and experiencing greater food availability, and warmer conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Eurasian badgers Meles meles habitually deposit droppings and other scent marks at latrines, which may be associated with territorial defence, and communicate information related to group and individual identity and status, and food resources. Understanding patterns of latrine distribution contributes to our understanding of badger social behaviour, and may be relevant to managing the risks of transmission of bovine tuberculosis from badgers to cattle. We investigated the distribution of badger latrines relative to habitat composition in a high-density badger population occupying a 7 km2 area of diverse landscape in south-west England. Results indicated that the frequency and density of badger latrines varied according to land use, with woodland and linear landscape features (particularly hedges and stone walls) being positively selected. The number of latrines decreased significantly with distance from linear features. Grassland was negatively selected given its availability, but contained the highest number of latrines. The tendency for latrines to be associated with particular habitat types covaried spatially across the study area. We present a habitat selection probability function, based on the output of our analyses, to allow comparison of observed versus expected latrine counts per habitat type at different sites. Habitat manipulation on farmland may offer opportunities to manage exposure of cattle to badger latrines. However, our analyses indicate that other factors (perhaps demographic or environmental) may also exert a substantial local influence on latrine location.  相似文献   

13.
AimAs habitat loss continues to accelerate with global human population growth, identifying landscape characteristics that influence species occurrence is a key conservation priority in order to prevent global biodiversity loss. In South Africa, the arboreal samango monkey (Cercopithecus albogularis sp.) is threatened due to loss and fragmentation of the indigenous forests it inhabits. The aim of this study was to determine the habitat preferences of the samango monkey at different spatial scales, and to identify key conservation areas to inform management plans for this species.LocationThis study was carried out in the western Soutpansberg Mountains, which represents the northernmost population of samango monkeys within South Africa, and the only endangered subspecies (C. aschwarzi).MethodsWe used sequentially collected GPS points from two samango monkey groups followed between 2012 and 2017 to quantify the used and available habitat for this species within the western Soutpansberg Mountains. We developed 2nd‐order (selection of ranging area), 3rd‐order (selection within range), and 4th‐order (feeding site selection) resource selection functions (RSFs) to identify important habitat features at each scale. Through scale integration, we identified three key conservation areas for samango monkeys across Limpopo Province, South Africa.ResultsHabitat productivity was the most important landscape variable predicting probability of use at each order of selection, indicating the dependence of these arboreal primates on tall‐canopy indigenous forests. Critical habitat across Limpopo was highly fragmented, meaning complete isolation between subpopulations is likely.Main conclusionsUnderstanding the habitat characteristics that influence samango monkey distribution across South Africa is crucial for prioritizing critical habitat for this species. Our results indicated that large, contiguous patches of tall‐canopy indigenous forest are fundamental to samango monkey persistence. As such, protected area expansion of large forest patches and creation of forest corridors are identified as key conservation interventions for this species.  相似文献   

14.
Adaptive capacity can present challenges for modelling as it encompasses multiple ecological and evolutionary processes such as natural selection, genetic drift, gene flow and phenotypic plasticity. Spatially explicit, individual-based models provide an outlet for simulating these complex interacting eco-evolutionary processes. We expanded the existing Cost-Distance Meta-POPulation (CDMetaPOP) framework with inducible plasticity modelled as a habitat selection behaviour, using temperature or habitat quality variables, with a genetically based selection threshold conditioned on past individual experience. To demonstrate expected results in the new module, we simulated hypothetical populations and then evaluated model performance in populations of redband trout (Oncorhynchus mykiss gairdneri) across three watersheds where temperatures induce physiological stress in parts of the stream network. We ran simulations using projected warming stream temperature data under four scenarios for alleles that: (1) confer thermal tolerance, (2) bestow plastic habitat selection, (3) give both thermal tolerance and habitat selection preference and (4) do not provide either thermal tolerance or habitat selection. Inclusion of an adaptive allele decreased declines in population sizes, but this impact was greatly reduced in the relatively cool stream networks. As anticipated with the new module, high-temperature patches remained unoccupied by individuals with the allele operating plastically after exposure to warm temperatures. Using complete habitat avoidance above the stressful temperature threshold, habitat selection reduced the overall population size due to the opportunity cost of avoiding areas with increased, but not guaranteed, mortality. Inclusion of plasticity within CDMetaPOP will provide the potential for genetic or plastic traits and ‘rescue’ to affect eco-evolutionary dynamics for research questions and conservation applications.  相似文献   

15.
Patterns of resource selection by animals may be influenced by sex, and often change over a 24‐h period. We used a dry sclerophyll landscape managed for commercial timber production to investigate the effects of sex and diel period on habitat selection by the swamp wallaby (Wallabia bicolor). We predicted that selection would be (i) affected by both sex and diel period; and (ii) positively related to lateral cover during the day, but to food resources at night. Non‐metric multidimentional scaling indicated that some of the available habitats differed markedly with respect to visibility (an indicator of lateral cover), fern cover, forb cover, wallaby density and a forage quality index, providing the basis for non‐random habitat selection. At the landscape scale, wallabies showed strong selection for 5‐year‐old regenerating sites, selected against 10‐year‐old regenerating sites and unharvested forest, and avoided recently harvested (3–10 months post‐harvest) sites completely. At the scale of individual home ranges, a pooled male and female sample demonstrated selection for unharvested forest over recently harvested sites during both diurnal and nocturnal periods. A separate analysis showed that both sex and diel period influenced the selection of 5‐ and 10‐year‐old sites and the surrounding unharvested forest. Using a novel approach, we demonstrated that diurnal habitat selection by both sexes was negatively correlated with visibility, representing stronger selection for areas with more lateral cover. Nocturnal selection by females was positively correlated with values of a forage quality index, but this was not the case for males. We hypothesise that the observed patterns of selection were driven by the need to find food and avoid predators, but were also affected by the different reproductive strategies of males and females. Our results demonstrate the importance of incorporating factors such as sex and diel period into analyses of habitat selection.  相似文献   

16.
采用模拟运输的方法,选取平均体长为(13.58±0.23)cm、平均体质量为(8.55±0.39)g的长江刀鲚幼鱼为实验对象,设置正常应激组和加盐抗应激组(盐度为10‰),每组3个平行,运输结束后将剩余的鱼放回原培育池,研究分析了正常应激组和加盐抗应激组在装载前(BL)、装载后(AL)及运输胁迫2h、4h、6h、8h和恢复24h、96h后,长江刀鲚血浆渗透压、皮质醇、血糖和肝糖原的变化规律及恢复情况。结果显示,正常应激组和加盐抗应激组经装载、8h运输及恢复96h后的成活率分别为20%和100%。运输胁迫导致正常应激组刀鲚血液渗透压整体呈下降趋势,10‰盐度则显著提高血浆渗透压,至运输8h后,血液渗透压达到最高值(0.348±0.002)m Osm/kg。长江刀鲚血浆皮质醇在运输2h后急剧升高达到最大值,而10‰盐度使得运输刀鲚的血浆皮质醇在运输4h后达到峰值(574.71±64.75)ng/m L。运输胁迫导致正常应激组长江刀鲚血糖的明显升高;而加盐抗应激组血糖含量的变化幅度显著低于正常应激组,运输6h后血糖值趋于稳定。肝糖原的变化规律与血糖浓度相对应,推测血糖值的变化主要源于肝脏糖原的动员。实验结果表明,10‰盐度可显著提高血浆渗透压水平,降低其能量物质消耗,避免了撞壁、擦伤掉鳞等强烈的应激反应,显著提高了成活率。  相似文献   

17.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

18.
Field distributions of benthic and hyporheic invertebrates are dynamic and are influenced by many physical and chemical factors. A laboratory flume containing natural gravel substrates was used to test the hypothesis that the amphipod Gammarus roeseli Gervais actively selects habitat based on two important environmental variables, dissolved oxygen concentration and direction of water flow. Under homogeneous oxygen concentrations throughout the flume, amphipods accumulated downstream. During trials with uniformly hypoxic conditions throughout the flume, G. roeseli moved to stones and screens at the water surface and above, into the zone normally saturated with humidity. This behavior, termed aquatic surface respiration, may enhance survival during periods of oxygen deficiency. Oxygen gradients were created in the flume by injecting water of differing oxygen concentrations into the head and the center of the channel. A statistically significant response to these gradients by G. roeseli demonstrates active selection of regions with more favorable oxygen concentrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The changes in dry mass, wet mass and energy content were determined during the establishment of the incipient colony. The winged reproductives of H. mossambicus are weak fliers. It is postulated that the alates compensate for the large quantity of reserve material by reducing their body water. The wet mass of both males and females increased significantly (twice original mass) from emergence until the first larvae appeared which tends support to this view. Furthermore, although the termites maintained in groups imbibed water, it is also clear that the reproductives, as long as they remain social, maintain the same low body-water content. This desiccated physiological condition appears to be and adaptation which assists flight and dispersal. In contrast with sterile eggs, fertile eggs absorbed water during development. The paired females (normal and homosexual) maintained the same energy/unit wet mass from egg production until the first workers appeared. Thus the possibility exists that the hydrophobic reserves (e.g. triglycerides) were converted to the hydrophilic reserves (e.g. carbohydrates). The same applied to the eggs and offspring.The changes in dry mass, wet mass, body water and energy content of females per unit of eggs (specific mass) produced were 0.005, 8.696, 21,276 and 12.820 respectively. The small specific dry mass value can probably be ascribed to the use of small amounts of glycerides and the increase in dry mass by the conversion from relatively light and “compact” glycerides to relatively heavy and “bulky” glycogen.Females utilised far more dry mass and energy in comparison to males to survive until the first workers appeared. Wet mass, body water and energy used in rearing of the offspring shows clearly that males made a larger contribution to the water and energy requirements of the offspring.  相似文献   

20.
Y. Tominaga  M. Tazawa 《Protoplasma》1981,109(1-2):113-125
Summary The effect of osmolarity of the vacuolar sap ofChara australis on cytoplasmic streaming was analyzed using the vacuolar perfusion technique. The osmolarity was varied between 0.3 M, which is normal and 1.2 M. The streaming rate decreased markedly with an increase in sap osmolarity, while the motive force increased significantly. This may be explained in terms of an increase in the sliding resistance at the sol-gel interface where active shearing occurs. Increase in the resistance is assumed to be caused by osmotic dehydration of the cytoplasm. This assumption was verified by the fact that in tonoplast-free cells, no significant inhibition of the streaming was observed by heightening the osmolarity of the cytoplasm with sorbitol. Heightening it with K+ salts inhibited the streaming to a greater extent than with sorbitol. The inhibition differed according to the anion species. Potassium methanesulfonate at 0.3 M and KCl at 0.6 M stopped the streaming almost completely, while 0.59 M K2SO4 was less inhibitory. Actin filaments were observed even in the presence of 0.6 M KCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号